
Chapitre 9 :
Déployer et
Sécuriser des
Applications
Android

Déployer et Sécuriser des Applications Mobiles
sous Android
Ce chapitre aborde les étapes essentielles du déploiement et de la sécurisation des applications Android, des phases

finales indispensables avant leur mise à disposition des utilisateurs. Il met en lumière les bonnes pratiques

permettant d’assurer la fiabilité, la protection des données et la conformité aux exigences de Google Play. Nous

aborderons les points suivants :

1

Préparer
l’application :
Debug vs
Release

2

Signer
l’application

3

Tester avant
publication

4

Importer
l’application sur
Google Play
Console

Qu'est-ce que le déploiement d'applications
mobiles ?
Le déploiement d'une application mobile est un processus en plusieurs étapes, crucial pour rendre votre produit accessible aux utilisateurs. Il ne

s'agit pas seulement de publier l'application, mais d'une série d'actions allant de la préparation à la maintenance post-lancement.

1

Préparation de l'Application
Cette phase inclut la finalisation du code,

les tests rigoureux pour assurer la

qualité, la conformité aux directives des

plateformes (comme Google Play Store)

et la signature numérique de

l'application pour garantir son

authenticité.

2

Distribution et Publication
Il s'agit de soumettre l'application aux

marchés d'applications (par exemple, le

Google Play Store). Cela implique de

configurer la page du produit, de gérer

les versions et de choisir les canaux de

distribution appropriés pour atteindre

votre public cible.

3

Surveillance et Maintenance
Après le lancement, il est essentiel de

suivre les performances de l'application,

de recueillir les retours des utilisateurs,

de publier des mises à jour régulières

pour ajouter des fonctionnalités ou

corriger des bugs, et de s'assurer de la

sécurité continue de l'application.

La sécurisation des applications mobiles
La sécurisation d’une application mobile consiste à protéger l’application, les données et les utilisateurs contre les accès non autorisés, les fuites d’informations et les attaques, tout au long de son
cycle de vie.

Sécurisation et intégrité de l’application Android
La sécurisation d’une application Android repose d’abord sur la protection de l’application

elle-même, incluant son code source, les bibliothèques intégrées, le mécanisme de signature

et le processus de mise à jour. La signature des APK ou AAB garantit l’authenticité de

l’application et permet à Android de vérifier que les mises à jour proviennent bien du même
développeur. Par ailleurs, l’utilisation de techniques d’obfuscation du code telles que R8 ou

ProGuard permet de rendre le code plus difficile à analyser ou à modifier, renforçant ainsi la

protection contre la rétro-ingénierie et les attaques malveillantes.

Protection et sécurisation des données de l’application
Les données manipulées par une application Android constituent un élément critique de sa

sécurité, qu’il s’agisse de données locales (bases SQLite, fichiers), de données échangées sur

le réseau, ou de données sensibles comme les tokens d’authentification et les mots de passe.

Pour garantir leur confidentialité et leur intégrité, plusieurs mécanismes sont essentiels : le
chiffrement des données (par exemple avec AES) pour le stockage local, l’utilisation du

Android Keystore pour protéger les clés cryptographiques, et la sécurisation des

communications réseau via HTTPS / TLS afin d’éviter l’interception ou la modification des

données en transit.

Sécurité centrée sur l’utilisateur
La sécurité centrée sur l’utilisateur concerne la gestion de son identité, de ses sessions et des

permissions accordées à l’application. Elle vise à s’assurer que seules les personnes

autorisées peuvent accéder aux fonctionnalités et aux données sensibles. Cela passe par des

mécanismes d’authentification forte (mot de passe robuste, MFA), une gestion rigoureuse des

permissions Android selon le principe du moindre privilège, ainsi que l’intégration de
solutions de biométrie (empreinte digitale, reconnaissance faciale) pour renforcer l’accès

sécurisé tout en améliorant l’expérience utilisateur.

Sécurité des communications entre l’application et l’extérieur
La sécurité des communications concerne les échanges de données entre l’application et les

serveurs ou API distants. Elle vise à garantir la confidentialité, l’intégrité et l’authenticité des

informations transmises sur le réseau. Cela repose notamment sur l’utilisation de TLS

(HTTPS) pour chiffrer les échanges, le certificate pinning pour s’assurer que l’application

communique uniquement avec des serveurs de confiance, et des mécanismes de protection
contre les attaques de type Man-in-the-Middle (MITM), fréquentes sur les réseaux publics ou

non sécurisés.

Publier votre application
Le terme "publication" désigne le processus général qui met vos applications Android à la disposition des utilisateurs. Voici les étapes à

suivre lorsque vous publiez une application Android :

Préparer l'application en vue de sa
publication

Au cours de l'étape de préparation, vous compilez une

version de votre application. Publier l'application
Au cours de l'étape de publication, vous assurez la

promotion, la vente et la distribution de la version finale de
votre application que les utilisateurs peuvent télécharger et

installer sur leur appareil Android.

Publier votre application
Le terme "publication" est lié à ces termes clés :

Build
Le build est le processus automatisé qui transforme le

code source d’une application mobile en un livrable

exécutable (APK ou AAB). Dans le contexte du

déploiement Android, le build inclut :

compilation du code

résolution des dépendances

optimisation (R8 / ProGuard)

signature

génération du livrable final

Un build variant correspond à une version spécifique de

l’application générée lors de la compilation, résultant de

la combinaison d’un type de build (debug ou release) et,

s’ils existent, de product flavors. Chaque build variant est
conçu pour un contexte précis (développement, test,

production, version gratuite ou payante) et génère un

APK ou AAB distinct, comme par exemple debug, release,

freeDebug ou paidRelease.

Debug
Le mode Debug est une configuration de build destinée

au développement et aux tests, facilitant l’analyse et le

débogage de l’application. Ses caractéristiques sont les

suivants :

signature avec clé debug

logs activés

pas ou peu d’optimisation

installable directement

 Il n'est jamais utilisé pour la production.

Release (version de production)
Une version release est une version finale de

l’application, destinée aux utilisateurs finaux et prête à

être publiée.

Une build release :

est signée avec une clé sécurisée

n’est pas débogable

utilise des optimisations (suppression du code

inutile)

ne contient pas de logs de debug

Garantit la sécurité, les mises à jour futures, la

performance et la stabilité

APK signé (usage local ou interne)

AAB signé (publication Play Store)

Publier votre application
On peut distribuer des applications Android aux formats suivants :

APK (Android Package)
Un APK (Android Package) est le fichier bianaire final installable sur un

appareil Android.

Il contient tout ce qui est nécessaire à l’exécution de l’application.

Un APK est une archive qui regroupe :

le code compilé (.dex)

les ressources (images, layouts, chaînes de caractères…)

le manifeste Android (AndroidManifest.xml)

les bibliothèques natives

la signature numérique

Installable directement sur un appareil Android

Peut être installé via Google Play ou manuellement

Toujours utilisé techniquement, mais n’est plus le format principal de
publication sur Google Play

AAB (Android App Bundle)
Un AAB (Android App Bundle) est un format de distribution et de publication,

introduit par Google pour optimiser la diffusion des applications Android.

Il n’est pas installable directement sur un appareil.

Fournit à Google Play tous les éléments de l’application

Permet à Google de générer des APK optimisés par appareil

Réduit de la taille des applications et Optimisation par type d’appareil

Sécurité renforcée (Play App Signing)

Format obligatoire sur Google Play pour les nouvelles applications (depuis

2021)

Le développeur signe l’AAB et Google Play vérifie la signature, génère des APK

spécifiques (langue, ABI, densité écran et signe les APK finaux pour les

utilisateurs

Préparer la publication de votre
application

Configurer la publication de votre application1.

Compiler et signer la version finale de votre application2.

Tester la version de votre application3.

Mettre à jour les ressources de l'application pour la

publier

4.

Préparer les serveurs et services distants dont votre
application dépend

5.

ETAPE 1 : Configurer la publication de votre application

if (BuildConfig.DEBUG) {
 Log.d("TAG", "Message de debug")
}

S’assurer que la journalisation (logs) est
désactivée ou supprimée

Supprimer les logs sensibles en production

Ou les encapsuler dans un test de debug :

Ainsi, aucun log ne sera exécuté en version release.

app/build.gradle.kts

android {
 buildTypes {
 getByName("release") {
 isDebuggable = false
 isMinifyEnabled = true
 isShrinkResources = true
 }
 }
}

Vérifier que debuggable est à false

Fichier :

vérifier :

Pour garantir que l’application n’est pas attachable par un debugger.

ETAPE 1 : Configurer la publication de votre application

 android {
 namespace = "com.example.testapp"
 compileSdk = 33

 defaultConfig {

 applicationId = "com.example.testapp"
 minSdk = 24

 targetSdk = 33
 versionCode = 1
 versionName = "1.0"

 ...
 }

 ...
 }

 ...

Définir les informations relatives à la version de votre application

Le système Android applique la compatibilité des versions du système, comme indiqué par le paramètre minSdk
dans les fichiers de compilation. Ce paramètre permet à une application de spécifier l'API système minimale avec

laquelle elle est compatible.

 android {

 ...
 defaultConfig {
 ...

 versionCode = 2
 versionName = "1.1"

 }
 productFlavors {

 create("demo") {
 ...
 versionName = "1.1-demo"

 }
 create("full") {

 ...
 }

 }
 }

Définir les valeurs de la version

Vous pouvez définir des valeurs par défaut pour ces paramètres en les incluant dans le bloc defaultConfig {},

imbriqué dans le bloc android {} du fichier build.gradle ou build.gradle.kts de votre module. Vous pouvez ensuite

ignorer ces valeurs par défaut pour différentes versions de votre application en définissant des valeurs distinctes

pour chaque type de compilation ou type de produit. Le fichier suivant affiche les paramètres versionCode et

versionName dans le bloc defaultConfig {}, ainsi que le bloc productFlavors {}.

Ces valeurs sont ensuite fusionnées dans le fichier manifeste de votre application au cours du processus de
compilation.

ETAPE 2 : Compiler et signer la version finale de
votre application
Vous pouvez utiliser les fichiers de compilation Gradle avec le type de compilation release pour compiler et signer la version finale de votre

application.

Android exige que toutes les applications Android soient signées à l’aide d’un certificat numérique.

Aujourd’hui, la publication sur Google Play se fait via un Android App Bundle (AAB), à partir duquel Google génère et signe les APK
optimisés destinés aux appareils des utilisateurs.

Les procédures à suivre pour signer une nouvelle application sur Google Play :

Générer une clé d'importation et un keystore 1.

Signer votre application avec votre clé d'importation 2.

Configurer la signature d'application Play3.

Préparer la publication de votre application

ETAPE 3 : Tester la
version de votre

application
Avant de distribuer votre application, vous

devez tester la version à publier sur au

moins un appareil de la taille d'un
téléphone portable et un appareil de la

taille d'une tablette. Firebase Test Lab est

utile pour effectuer des tests sur une grande

variété d'appareils et de configurations.

ETAPE 4 : Mettre à jour
les ressources de

l'application pour la
publier

Assurez-vous que toutes les ressources de

l'application, telles que les fichiers
multimédias et les images, sont mises à jour

et incluses avec l'application ou transférées

sur les serveurs de production appropriés.

ETAPE 5 : Préparer les
serveurs et services
distants dont votre
application dépend

Si votre application dépend de serveurs ou

de services externes, assurez-vous qu'ils
sont sécurisés et prêts pour la production.

https://firebase.google.com/docs/test-lab/android/get-started?hl=fr

Sur Google Play Console

1

Compte sur la place de marché

Si vous n'en avez pas déjà, vous devez créer un

compte sur la place de marché d'applications que

vous souhaitez utiliser.

2

Icône de l'application

Vous devez également créer une icône pour votre

application.

3

Contrat de licence utilisateur final (CLUF)

Et préparer un contrat de licence utilisateur final

(CLUF) pour votre organisation, votre propriété

intellectuelle et vous-même.

Signature de l'application
La signature d’une application Android est un mécanisme de sécurité basé sur la
cryptographie qui permet :

d’identifier l’auteur de l’application

de garantir l’intégrité du code

d’autoriser les mises à jour d’une application existante

Signature de l application
Keystores et clés

Keystores
Les keystores Java (.jks ou .keystore) sont des fichiers binaires
servant de dépôts de certificats et de clés privées. Ils

permettent de :

Stocker les clés utilisées pour signer l’application

Garantir que seul le propriétaire peut signer des mises à

jour

Un alias est un nom logique qui identifie une clé spécifique à

l’intérieur d’un keystore. Un keystore peut contenir plusieurs
clés .

Clés
Clé de signature d'application : elle permet de signer les
fichiers APK installés sur l'appareil d'un utilisateur.

Conformément au modèle de mises à jour sécurisées

Android, la clé de signature reste la même pendant toute la

durée de vie de votre application.

Clé d'importation : elle sert à signer l'app bundle ou le fichier

APK avant de l'importer pour la signature d'application avec

Google Play.

Signature de l' application
ETAPE 1 : Générer une clé d'importation et un keystore

Dans la barre de menu, cliquez sur Build > Generate Signed
Bundle/APK .

1.

Dans la boîte de dialogue Generate Signed Bundle or APK

(Générer un app bundle/APK signé), sélectionnez Android
App Bundle (ce qui est recommandé), puis cliquez sur Next

(Suivant).

2.

Sous Key Store Path (Chemin du keystore), cliquez sur Create
new.

3.

Dans la fenêtre New Key Store (Nouveau keystore), renseignez

les champs concernant votre keystore et votre clé.

4.

Signature de l' application
ETAPE 1 : Générer une clé d'importation et un keystore

Keystore1.

Key store path (Chemin d'accès) : sélectionnez l'emplacement où votre keystore doit être créé. Ajoutez également un nom de fichier avec l'extension .jks à

la fin du chemin d'accès.

Password (Mot de passe) : créez et confirmez un mot de passe sécurisé pour votre keystore.

Clé2.

Alias: : saisissez un nom permettant d'identifier votre clé.

Password (Mot de passe) : créez et confirmez un mot de passe sécurisé pour votre clé. Utilisez le même mot de passe que pour votre keystore.

Validity (years) (Validité en années) : définissez la durée de validité de votre clé, en années. Votre clé doit être valide pendant au moins 25 ans pour que

vous puissiez signer des mises à jour d'applications avec la même clé pendant toute la durée de vie de votre application.

Certificate (Certificat) : saisissez certaines informations vous concernant pour votre certificat. Ces informations n'apparaissent pas dans votre application,

mais sont incluses dans votre certificat avec l'APK.

Une fois le formulaire rempli, cliquez sur OK.3.

Si vous souhaitez créer et signer votre application avec votre clé d'importation, passez à la section Signer votre application avec votre clé d'importation. Si vous

souhaitez uniquement générer la clé et le keystore, cliquez sur Annuler.

Signature de l' application
ETAPE 2 : Signer votre application avec votre clé d'importation

Pour signer votre application avec Android Studio, procédez comme suit :

Si la boîte de dialogue Generate Signed Bundle or APK (Générer un

app bundle/APK signé) n'est pas ouverte, cliquez sur Build > Generate

Signed Bundle/APK (Créer > Générer un app bundle/APK signé).

1.

 Dans la boîte de dialogue Generate Signed Bundle or APK (Générer un

app bundle/APK signé), sélectionnez Android App Bundle ou APK, puis

cliquez sur Next (Suivant).

2.

Sélectionnez un module dans la liste déroulante. 3.

Indiquez le chemin d'accès à votre keystore et à l'alias de votre clé,

puis saisissez leurs mots de passe respectifs.

4.

Cliquez sur Next (Suivant). 5.

Signature de l' application
ETAPE 2 : Signer votre application avec votre clé d'importation

Pour signer votre application avec Android Studio, procédez
comme suit :

6. Dans la fenêtre suivante, sélectionnez un dossier de destination

pour votre application signée. Ensuite, sélectionnez le type de
compilation et, si nécessaire, choisissez le ou les types de produit.

7. Si vous créez et signez un APK, vous devez sélectionner les

versions de signature que votre application doit accepter.

8 . Cliquez sur Créer.

Une fois qu'Android Studio a terminé de compiler votre
application signée, vous pouvez la localiser (localize) ou l'analyser

(analyze) en cliquant sur l'option appropriée dans la notification

pop-up

Signature de l' application
ETAPE 3 : Utiliser la signature d'application Play

Configurer votre application

Connectez-vous à la Play Console.1.

Créez votre nouvelle release en suivant les instructions pour la

préparer et la déployer.

2.

Après avoir choisi un canal de publication, configurez la signature

d'application dans la section App signing (Signature

d'application).

3.

Une version est une combinaison d'une ou de plusieurs révisions

d'application que vous préparez avant de déployer une application

ou la mise à jour d'une application. Vous pouvez créer une version

dans trois canaux de tests différents ou dans le canal de production :

Canal de tests ouverts : les versions de tests ouverts sont

accessibles aux testeurs sur Google Play. Les utilisateurs peuvent

rejoindre vos tests depuis votre fiche Play Store.

Canal de tests fermés : les versions de tests fermés sont

accessibles à un nombre limité de testeurs que vous sélectionnez

et qui testent une version préliminaire de votre application et

vous font part de leurs commentaires.

Canal de tests internes : les versions de tests internes sont

accessibles aux testeurs de votre choix (100 maximum).

Canal de production : les versions de production sont accessibles

à tous les utilisateurs de Google Play dans les pays de votre choix.

https://play.google.com/console/?hl=fr

Signature de l' application
Que se passe-t-il derrière l'assistant graphique d’Android Studio

Quand on clique dans Android Studio sur : Build → Generate Signed Bundle / APK , Android Studio ne compile rien lui-même. Il agit comme une interface graphique qui déclenche trois mécanismes

techniques précis.

1 Création et gestion de la clé de signature (keytool)

Il appelle l’outil Java standard keytool

Il génère :

un keystore (.jks)

une clé privée

un certificat auto-signé

Android Studio masque cet outil, mais le mécanisme est universel et indépendant de l’IDE.

3 Compilation réelle de l’application (Gradle)

Gradle est l’outil qui :compile le code, applique les règles de sécurité, signe l’application et

génère l’AAB ou l’APK.

Quand on clique sur Generate Signed Bundle, Android Studio exécute en arrière-plan :

./gradlew bundleRelease pour un AAB destiné à être transformé par Google Play

ou

./gradlew assembleRelease pour un APK prêt à installer

2 Configuration de la signature (signingConfigs)

Associer un keystore, une clé et un mot de passe à une version de compilaton (release)

Il écrit automatiquement dans build.gradle.kts, une configuration du système de build (Gradle) :

signingConfigs {

 create("release") {

 storeFile = file("my-release-

key.jks")

 storePassword = "****"

 keyAlias = "mykey"

 keyPassword = "****"

 }

}

buildTypes {

 getByName("release") {

 signingConfig =

signingConfigs.getByName("release")

 }

}

Signature de l' application
Que se passe-t-il derrière le bouton d’Android Studio

Compilation réelle de l’application (Gradle)

./gradlew bundleRelease

app/build/outputs/bundle/release/app-release.aab

1 Commande principale

Cette commande génère un Android App Bundle (AAB) destiné à Google Play.

Elle ne produit pas directement un APK installable, mais un fichier .aab optimisé.

3 Résultat concret

Après exécution, tu trouveras :

Ce fichier est optimisé pour Google Play.

Google Play peut générer à partir de ce bundle :

APK universel

APKs fractionnés par appareil, ABI, densité, langue

2 Que fait Gradle derrière ?

bundleRelease n’est pas une tâche isolée. Elle déclenche un graphe de tasks. Voici les principales :

Task Gradle Rôle

compileReleaseJavaWithJavac Compile le code Java/Kotlin pour le build type

Release

mergeReleaseResources Fusionne toutes les ressources (images, layouts,

strings)

processReleaseManifest Prépare le manifeste Android

packageRelease Prépare les fichiers pour le bundle

signReleaseBundle Applique la signature avec le keystore de release

bundleRelease Assemble enfin le .aab final

Chaque task dépend des précédentes : si compileReleaseJavaWithJavac échoue, le bundle ne peut pas

être généré.

Signer votre application
Facteurs à prendre en compte concernant la signature

Il est recommandé de signer une application avec le même certificat pendant toute sa durée de vie. Les raisons sont les suivantes :

Mises à jour

Lorsque le système installe une mise à jour

d'application, il compare le ou les certificats

de la nouvelle version à ceux de la version

existante. Le système n'autorise la mise à

jour que si les certificats correspondent. Si

vous signez la nouvelle version avec un

certificat différent, vous devez attribuer un

nom de package différent à l'application.

Dans ce cas, l'utilisateur installe cette

nouvelle version comme une nouvelle

application.

Modularité

Android autorise les APK signés par le même

certificat à s'exécuter dans le même

processus, si les applications le demandent,

afin que le système les traite comme une

seule et même application. Procéder ainsi

vous permet de déployer votre application

sous forme de modules que les utilisateurs

peuvent mettre à jour indépendamment.

Autorisations de partager du
code ou des données

Android fournit des autorisations basées sur

la signature, afin qu'une application puisse

exposer des fonctionnalités à une autre

application signée avec un certificat

spécifié. En signant plusieurs APK avec le

même certificat et en utilisant les

vérifications d'autorisation basées sur la

signature, vos applications peuvent partager

du code et des données de manière

sécurisée.

Signature de l' application
Facteurs à prendre en compte concernant la signature

Sécuriser votre clé
La sécurisation de la clé de signature d’application est cruciale

pour protéger votre identité de développeur et la confiance des

utilisateurs. Si la clé est compromise, un tiers peut distribuer des
applications malveillantes au nom de votre application, voler des

données ou attaquer le système. La clé privée est indispensable

pour toutes les mises à jour futures, et sa perte empêche la

publication de nouvelles versions. Pour la protéger, il est
recommandé de choisir des mots de passe forts, de ne jamais

partager la clé ou le keystore, et de conserver le keystore en lieu

sûr.

Supprimer les informations de signature de
vos fichiers de compilation

Par défaut, Android Studio peut inclure vos informations de

signature (keystore, mots de passe, alias) en texte clair dans les

fichiers build.gradle.

Ceci représente un risque de sécurité, surtout si le code est

partagé ou open source.

Il faut toujours ajouter le keystore dans .gitignore en cas
d'utilisation de GIT.

Signature de l' application
Facteurs à prendre en compte concernant la signature
Comment supprimer les informations de signature de vos fichiers de compilation

storePassword=myStorePassword
keyPassword=myKeyPassword

keyAlias=myKeyAlias
storeFile=myStoreFileLocation

def keystorePropertiesFile = rootProject.file("keystore.properties")
def keystoreProperties = new Properties()
keystoreProperties.load(new FileInputStream(keystorePropertiesFile))

Solution : utiliser un fichier séparé

Créez un fichier keystore.properties à la racine du projet (ou ailleurs selon vos besoins CI/CD).

Stockez-y vos informations de signature :

Chargement des propriétés dans build.gradle

Chargez keystore.properties dans votre build.gradle avant le bloc android {} :

android {

 signingConfigs {
 config {
 keyAlias keystoreProperties['keyAlias']

 keyPassword keystoreProperties['keyPassword']
 storeFile file(keystoreProperties['storeFile'])
 storePassword keystoreProperties['storePassword']

 }
 }
}

Référencez ensuite ces propriétés dans le bloc signingConfigs :

Compilation sécurisée

Sélectionnez le build variant et compilez via Build > Build Bundle(s)/APK(s).

Les fichiers générés (build/outputs/) ne contiennent plus d’informations sensibles et peuvent être

inclus dans un contrôle de code source.

Importer votre application
dans la Play Console
Une fois que vous avez signé la version de votre application, vous devez

l'importer sur Google Play pour l'inspecter, la tester et la publier.

Importer votre application dans la Play Console
Inspecter les APK à l'aide des dernières versions et bundles

Si vous importez votre application en tant qu'Android App Bundle, la Play Console génère automatiquement des APK divisés et des APK
multiples pour toutes les configurations d'appareil compatibles avec votre application.

Dans la Play Console, vous pouvez utiliser la section "Derniers bundles" de la page "Dernières versions et bundles" pour afficher tous les

artefacts APK générés par Google Play, inspecter des données telles que les appareils compatibles et les économies de taille des APK, et

télécharger les APK générés pour les déployer et les tester localement.

Il faut s'enregistrer au service Signature d'application Play. Celui-ci

est obligatoire depuis août 2021 pour importer et signer toutes les

nouvelles applications.

Il faut s'assurer que votre application respecte les exigences de

taille de Google Play. Google Play accepte une taille de

téléchargement totale cumulée de 4 Go. Cette taille inclut tous les
modules et packs d'éléments d'installation.

Importer votre application dans la Play Console
Mettre à jour votre app bundle

Pour mettre à jour votre application une fois importée dans la Play Console, vous devez augmenter le numéro de la version inclus dans le
module de base, puis créer et importer un nouvel app bundle. Google Play génère ensuite les APK mis à jour avec les nouveaux codes de

version et les distribue aux utilisateurs selon les besoins.

Importer votre application dans la Play Console
Préparer et déployer une version
Étape 1 : Créez une version

Une version est une combinaison d'une ou de plusieurs révisions d'application que vous préparez avant de déployer une application ou la

mise à jour d'une application. Vous pouvez créer une version dans trois canaux de tests différents ou dans le canal de production :

Canal de tests ouverts :

les versions de tests ouverts

sont accessibles aux testeurs
sur Google Play. Les

utilisateurs peuvent rejoindre

vos tests depuis votre fiche

Play Store.

Canal de tests fermés :

 les versions de tests fermés

sont accessibles à un nombre
limité de testeurs que vous

sélectionnez et qui testent

une version préliminaire de

votre application et vous font

part de leurs commentaires.

Canal de tests internes :

les versions de tests internes

sont accessibles aux testeurs
de votre choix (100

maximum).

Canal de production :

les versions de production

sont accessibles à tous les
utilisateurs de Google Play

dans les pays de votre choix.

Importer votre application dans la Play Console
Préparer et déployer une version

Étape 2 : Préparez la version de votre application

Une version est une combinaison d'une ou de plusieurs révisions d'application que vous préparez avant de déployer une application ou la
mise à jour d'une application. Vous pouvez créer une version dans trois canaux de tests différents ou dans le canal de production :

Utiliser le service Signature
d'application Play

Ajoutez vos app bundles Attribuez un nom à la version et
Saisissez les notes de version

Avec le service Signature d'application Play, Google gère et protège à votre place votre clé de signature d'application, et l'utilise pour

signer des APK de distribution optimisés et générés à partir de vos app bundles. Ce service stocke votre clé de signature d'application sur

l'infrastructure sécurisée de Google et propose des options de mise à niveau pour renforcer la sécurité.

Importer votre application dans la Play Console
Préparer et déployer une version
Étape 3 : Vérifiez et déployez votre version

Préparer les conditions de

publication

Avant le déploiement, il faut

compléter la fiche Play Store,

renseigner le contenu de

l’application (confidentialité,

accès aux données) et définir le

prix. Sans ces éléments, la

version ne peut pas être

soumise à l’examen ni publiée.

Vérifier et finaliser la version

à déployer

Dans la Play Console,

sélectionnez le canal de test (ou

production), puis vérifiez la

version brouillon. L’écran

Prévisualiser et confirmer

permet de détecter les erreurs

bloquantes, qui doivent être

corrigées avant toute

publication

Gérer l’examen et le

déploiement progressif

Selon le type de modification,

vous pouvez soit enregistrer les

changements pour les

soumettre plus tard, soit

publier immédiatement. Pour

une mise à jour, il est possible

de choisir un pourcentage

d’utilisateurs afin de réaliser un

déploiement progressif.

Lancer le déploiement auprès

des utilisateurs

Une fois toutes les vérifications

effectuées, cliquez sur Lancer le
déploiement. Pour une

première publication en

production, l’application

devient accessible à tous les

utilisateurs Google Play dans

les pays sélectionnés après

validation.

Importer votre application dans la Play Console
Préparer et déployer une version
Étape 4 : Vérifiez les informations de la version

Identification et état de la
version

Cette section indique le nom de la

version, le canal de déploiement
(production, test ouvert, test

fermé) et son état actuel

(brouillon, en cours, publié,

suspendu).

Elle permet de savoir rapidement
où en est chaque version de

l’application.

Informations de déploiement

On y trouve la date de la dernière

mise à jour ainsi que les pays ou

régions ciblés par le déploiement.
Cela aide à vérifier la disponibilité

géographique de l’application et à

gérer des déploiements

progressifs ou régionaux.

Contenu technique de la version

Cette partie liste les App Bundles

(AAB) et APK associés à la version

: nouveaux fichiers, fichiers
conservés ou désactivés.

Elle permet de contrôler

exactement quels artefacts

Android sont utilisés par Google

Play.

Suivi et historique de la version

On accède ici à la présentation de

la version (installations, mises à

jour, performances), aux notes de
version, et à l’historique de

déploiement.

Ces données servent à analyser

l’impact de la version et à suivre

toutes les actions effectuées
(diffusion, pause, reprise).

Canaux de distribution et
stores Android
Il existe plusieurs options pour distribuer les applications Android, allant de la

publication sur le Play Store aux stores alternatifs.

Canaux de distribution et stores Android
En dehors du Google Play Store, il existe plusieurs autres stores Android, chacun ayant ses propres procédures de publication et règles.

1

Samsung Galaxy Store
Store officiel des appareils Samsung

Nécessite un compte développeur Samsung

Upload direct des APK signés via le portail Samsung

Developer

Supporte tests internes et versions publiques

Parfois des optimisations spécifiques pour les appareils

Samsung

2

Huawei AppGallery
Store officiel pour les appareils Huawei

Nécessite un compte développeur Huawei

Upload d’APK ou App Bundle signé

Intégration avec Huawei Mobile Services (HMS) si nécessaire

Possibilité de déploiement par étapes et tests beta

3

Autres stores alternatifs
Amazon Appstore : pour tablettes Fire et smartphones

Amazon

Xiaomi GetApps, Oppo App Market, Vivo App Store : stores

régionaux ou fabricants

Chaque store demande :

Compte développeur dédié

Signature APK spécifique

Soumission via leur portail

Certains ont des règles de contenu et sécurité différentes du

Play Store

Points communs

Tous exigent que l’application soit signée

Tous permettent des tests internes avant publication

Les APK/AAB doivent respecter les guidelines de sécurité et compatibilité

La Play Console n’est pas utilisée, chaque store a son propre portail

Canaux de distribution et stores Android
Importer votre application dans la Play Console n’est pas la seule option, mais c’est la méthode officielle et recommandée pour la publication sur Google Play.

1

Play Console
(méthode officielle)

Importer un AAB ou APK signé

Configurer fiche Play Store,
canaux de test ou production

Obligatoire pour la publication

publique

2

Firebase App
Distribution

Permet de distribuer des builds

signés (APK ou AAB) à des testeurs

internes ou externes

Idéal pour tests alpha/bêta rapides

avant publication

Ne publie pas sur le Play Store

3

Distribution manuelle
(sideloading)

Installation directe de l’APK sur un

appareil via USB ou

téléchargement

Utile pour tests internes ou

démonstrations

Non recommandée pour un

déploiement public (sécurité

limitée, absence de mise à jour

automatique)

4

CI/CD + Play
Developer API

Automatisation de l’import et du

déploiement depuis un serveur

(GitHub Actions, GitLab CI, Jenkins)

Permet de uploader directement

un AAB signé sur la Play Console via

API

Toujours lié à la Play Console, mais

sans interface manuelle

Pour la publication officielle sur Google Play, la Play Console est obligatoire. Les autres méthodes servent surtout aux tests internes, beta ou distribution hors Play Store.

Conclusion : Déploiement et Sécurisation d'Applications Android
Points clés à retenir

Préparation
Comprendre les distinctions entre les versions Debug et Release, la configuration

adéquate, la gestion des logs et le versioning.

Signature
Maîtriser les Keystores, la gestion des clés et certificats, ainsi que les bonnes pratiques de

sécurité via des commandes bash.

Publication
Utiliser efficacement la Play Console, préparer les App Bundles (AAB) et APK, et effectuer

des tests internes rigoureux avant le lancement.

Déploiement
Gérer les différentes versions et canaux de déploiement, assurer un suivi précis des

performances et planifier les mises à jour.

Processus complet

Le déploiement et la sécurisation d'applications Android sont des étapes fondamentales qui exigent une attention méticuleuse à chaque phase. D'une préparation rigoureuse de la

version à la gestion stratégique de sa publication et de son déploiement via la Play Console, chaque détail compte. La signature sécurisée de l'application est un pilier central,

garantissant l'intégrité et l'authenticité du code. En respectant ces pratiques, les développeurs peuvent non seulement offrir une expérience utilisateur fiable, mais aussi protéger leurs

applications et leurs utilisateurs contre les menaces potentielles.

