Chapitre 9 :
Déployer et
Sécuriser des
Applications

Android

Déployer et Sécuriser des Applications fUlobiles
sous Android

Ce chapitre aborde les étapes essentielles du déploiement et de la sécurisation des applications Android, des phases
finales indispensables avant leur mise a disposition des utilisateurs. Il met en lumiere les bonnes pratiques
permettant d’assurer la fiabilité, la protection des données et la conformité aux exigences de Google Play. Nous

aborderons les points suivants :

1 2 3 4
Préparer Signer Tester avant Importer
I'application : I'’application publication I'application sur
Debug vs Qoogle Play

Release Console

Qu'est-ce que le déploiement d'applications
mobiles ?

Le déploiement d'une application mobile est un processus en plusieurs étapes, crucial pour rendre votre produit accessible aux utilisateurs. Il ne

s'agit pas seulement de publier l'application, mais d'une série d'actions allant de la préparation a la maintenance post-lancement.

—0——0— —0—

Préparation de I'Application Distribution et Publication Surveillance et Maintenance
Cette phase inclut la finalisation du code, Il s'agit de soumettre l'application aux Apres le lancement, il est essentiel de

les tests rigoureux pour assurer la marchés d'applications (par exemple, le suivre les performances de l'application,
qualité, la conformité aux directives des Google Play Store). Cela implique de de recueillir les retours des utilisateurs,
plateformes (comme Google Play Store) configurer la page du produit, de gérer de publier des mises a jour régulieres

et la signature numérique de les versions et de choisir les canaux de pour ajouter des fonctionnalités ou
['application pour garantir son distribution appropriés pour atteindre corriger des bugs, et de s'assurer de la

authenticité. votre public cible. sécurité continue de ['application.

La sécurisation des applications mobiles

La sécurisation d’une application mobile consiste a protéger I'application, les données et les utilisateurs contre les acces non autorisés, les fuites d’informations et les attaques, tout au long de son
cycle de vie.

Sécurisation et intéqgrité de I'application Android

La sécurisation d’une application Android repose d’abord sur la protection de 'application
elle-méme, incluant son code source, les bibliotheques intégrées, le mécanisme de signature
et le processus de mise a jour. La signature des APK ou AAB garantit 'authenticité de
l'application et permet a Android de vérifier que les mises a jour proviennent bien du méme
développeur. Par ailleurs, l'utilisation de techniques d’obfuscation du code telles que R8 ou
ProGuard permet de rendre le code plus difficile a analyser ou a modifier, renforcant ainsi la

protection contre la rétro-ingénierie et les attaques malveillantes.

Sécurité centrée sur l'utilisateur

La sécurité centrée sur l'utilisateur concerne la gestion de son identité, de ses sessions et des
permissions accordées a 'application. Elle vise a s’assurer que seules les personnes
autorisées peuvent accéder aux fonctionnalités et aux données sensibles. Cela passe par des
mécanismes d’authentification forte (mot de passe robuste, MFA), une gestion rigoureuse des
permissions Android selon le principe du moindre privilége, ainsi que l'intégration de
solutions de biométrie (empreinte digitale, reconnaissance faciale) pour renforcer 'acces
sécurisé tout en améliorant I'expérience utilisateur.

Protection et sécurisation des données de I'application

Les données manipulées par une application Android constituent un élément critique de sa
sécurité, qu’il s’agisse de données locales (bases SQLite, fichiers), de données échangées sur
le réseau, ou de données sensibles comme les tokens d’authentification et les mots de passe.
Pour garantir leur confidentialité et leur intégrité, plusieurs mécanismes sont essentiels : le
chiffrement des données (par exemple avec AES) pour le stockage local, l'utilisation du
Android Keystore pour protéger les clés cryptographiques, et la sécurisation des
communications réseau via HTTPS / TLS afin d’éviter U'interception ou la modification des

données en transit.

Sécurité des communications entre I'application et I'extérieur

La sécurité des communications concerne les échanges de données entre l'application et les
serveurs ou API distants. Elle vise a garantir la confidentialité, l'intégrité et 'authenticité des
informations transmises sur le réseau. Cela repose notamment sur l'utilisation de TLS
(HTTPS) pour chiffrer les échanges, le certificate pinning pour s’assurer que 'application
communique uniquement avec des serveurs de confiance, et des mécanismes de protection
contre les attaques de type Man-in-the-Middle (MITM), fréquentes sur les réseaux publics ou

non sécurisés.

Publier votre application

Le terme "publication" désigne le processus général qui met vos applications Android a la disposition des utilisateurs. Voici les étapes a

suivre lorsque vous publiez une application Android :

Préparer I'application en vue de sa o
publication

Au cours de |'étape de préparation, vous compilez une

version de votre application. . . :
PP o Publier I'application

Au cours de 'étape de publication, vous assurez la
promotion, la vente et la distribution de la version finale de
votre application que les utilisateurs peuvent télécharger et

installer sur leur appareil Android.

Publier votre application

Le terme "publication" est lié a ces termes clés :

Build Debug Release (version de production)
Le build est le processus automatisé qui transforme le Le mode Debug est une configuration de build destinée Une version release est une version finale de
code source d’une application mobile en un livrable au développement et aux tests, facilitant 'analyse et le application, destinée aux utilisateurs finaux et préte a
exécutable (APK ou AAB). Dans le contexte du débogage de l'application. Ses caractéristiques sont les étre publiée.
déploiement Android, le build inclut : suivants: Une build release :
e compilation du code e signature avec clé debug 2 2 Brrefias
e estsignée avec une clé sécurisée
e résolution des dépendances e logsactivés « nest pas débogable
o imisati R8/P ‘optimisati - Lo .
CTITEEItel (/AT EUETE) © [EBelpReepnlEe e utilise des optimisations (suppression du code
e signature e installable directement inutile)
* génération du livrable final Il n'est jamais utilisé pour la production. e necontient pas de logs de debug
Un build variant correspond a une version spécifique de e Garantit la sécurité, les mises a jour futures, la
l’'application générée lors de la compilation, résultant de performance et la stabilité
la combinaison d’un type de build (debugou release) et, + APKsigné (usage local ou interne)

s’ils existent, de product flavors. Chaque build variant est ., .
. o . e AAB signé (publication Play Store)
concu pour un contexte précis (développement, test,

production, version gratuite ou payante) et génére un

APK ou AAB distinct, comme par exemple debug, release,

freeDebugou paidRelease.

Publier votre application

On peut distribuer des applications Android aux formats suivants :

APK (Android Package)

Un APK (Android Package) est le fichier bianaire final installable sur un

appareil Android.

Il contient tout ce qui est nécessaire a l’exécution de l'application.

Un APK est une archive qui regroupe :

le code compilé (.dex)

les ressources (images, layouts, chaines de caractéres...)
le manifeste Android (AndroidManifest.xml)

les bibliotheques natives

la signature numérique

Installable directement sur un appareil Android

Peut étre installé via Google Play ou manuellement

Toujours utilisé techniquement, mais n’est plus le format principal de

publication sur Google Play

AAB (Android App Bundle)

Un AAB (Android App Bundle) est un format de distribution et de publication,

introduit par Google pour optimiser la diffusion des applications Android.
Il n’est pas installable directement sur un appareil.

Fournit a Google Play tous les éléments de l'application

Permet a Google de générer des APK optimisés par appareil

Réduit de la taille des applications et Optimisation par type d’appareil
Sécurité renforcée (Play App Signing)

Format obligatoire sur Google Play pour les nouvelles applications (depuis
2021)

Le développeur signe I'’AAB et Google Play vérifie la signature, génére des APK
spécifiques (langue, ABI, densité écran et signe les APK finaux pour les

utilisateurs

Préparer la publication de votre

application

1. Configurer la publication de votre application

2. Compiler et signer la version finale de votre application

3. Tester la version de votre application

4. Mettre a jour les ressources de 'application pour la
publier

5. Préparer les serveurs et services distants dont votre

application dépend

ETAPE 1 : Configurer la publication de votre application

S'assurer Que la journalisation (logs) est Vérifier gue debuggable est a false
désactivée ou supprimée o
Fichier:
e Supprimer les logs sensibles en production
e Oulesencapsuler dans un test de debug : app/build.gradle.kts
if (BuildConfig.DEBUG) {
Log.d("TAG", "Message de debug") vérifier :
}
android {
Ainsi, aucun log ne sera exécuté en version release. buildTypes {

getByName("release") {
isDebuggable = false
isMinifyEnabled = true
isShrinkResources = true

Pour garantir que l'application n’est pas attachable par un debugger.

ETAPE 1 : Configurer la publication de votre application

Définir les informations relatives a la version de votre application Définir les valeurs de la version

Le systeme Android applique la compatibilité des versions du systéme, comme indiqué par le paramétre minSdk Vous pouvez définir des valeurs par défaut pour ces paramétres en les incluant dans le bloc defaultConfig {3},

dans les fichiers de compilation. Ce paramétre permet a une application de spécifier |'API systéme minimale avec imbriqué dans le bloc android {} du fichier build.gradle ou build.gradle.kts de votre module. Vous pouvez ensuite
laquelle elle est compatible. ignorer ces valeurs par défaut pour différentes versions de votre application en définissant des valeurs distinctes

pour chaque type de compilation ou type de produit. Le fichier suivant affiche les paramétres versionCode et
android { versionName dans le bloc defaultConfig {3}, ainsi que le bloc productFlavors {}.
namespace = "com.example.testapp"

) Ces valeurs sont ensuite fusionnées dans le fichier manifeste de votre application au cours du processus de
compileSdk =33

compilation.
defaultConfig {
applicationld = "com.example.testapp" android {
minSdk = 24
defaultConfig {

targetSdk = 33
versionCode = 1

versionName = "1.0" versionCode = 2

versionName ="1.1"
} }
productFlavors {
} create("demo") {

versionName ="1.1-demo"

}

create("full") {

ETAPE 2 : Compiler et signer la version finale de
votre application

Vous pouvez utiliser les fichiers de compilation Gradle avec le type de compilation release pour compiler et signer la version finale de votre

application.

Android exige que toutes les applications Android soient signées a l'aide d’un certificat numérique.
Aujourd’hui, la publication sur Google Play se fait via un Android App Bundle (AAB), a partir duquel Google génere et signe les APK

optimisés destinés aux appareils des utilisateurs.
Les procédures a suivre pour signer une nouvelle application sur Google Play :

1. Générer une clé d'importation et un keystore
2. Signer votre application avec votre clé d'importation

3. Configurer la signature d'application Play

Préparer la publication de votre application

O 23

ETAPE 3 : Tester la ETAPE 4 : Mettre a jour
version de votre les ressources de
application I'application pour la
Avant de distribuer votre application, vous PUb“ef
devez tester la version a publier sur au Assurez-vous que toutes les ressources de
moins un appareil de la taille d'un ['application, telles que les fichiers
téléphone portable et un appareil de la multimédias et les images, sont mises a jour

utile pour effectuer des tests surune grande gy |es serveurs de production appropriés.

variété d'appareils et de configurations.

A

ETAPE 5 : Préparer les
serveurs et services
distants dont votre
application dépend

Si votre application dépend de serveurs ou

de services externes, assurez-vous qu'ils

sont sécurisés et préts pour la production.

https://firebase.google.com/docs/test-lab/android/get-started?hl=fr

Sur Qoogle Play Console

1

Compte sur la place de marché

Sivous n'en avez pas déja, vous devez créer un
compte sur la place de marché d'applications que
vous souhaitez utiliser.

2

Icone de I'application

Vous devez également créer une icone pour votre

application.

3

Contrat de licence utilisateur final (CLUF)

Et préparer un contrat de licence utilisateur final
(CLUF) pour votre organisation, votre propriété

intellectuelle et vous-méme.

100 Saak

0000 @&
FO0OEQ000 O,
(Looo St R S '

I

Signature de I'application Ty el

001101

La signature d’une application Android est un mécanisme de sécurité basé sur la
cryptographie qui permet :

e d’identifier lauteur de 'application

e de garantir Uintégrité du code

e d’autoriser les mises a jour d’une application existante

Signature de | application

Reystores et clés

Reystores

Les keystores Java (.jks ou .keystore) sont des fichiers binaires
servant de dépots de certificats et de clés privées. Ils

permettent de:

e Stocker les clés utilisées pour signer 'application

e Garantir que seul le propriétaire peut signer des mises a
jour

Un alias est un nom logique qui identifie une clé spécifique a
l’intérieur d’un keystore. Un keystore peut contenir plusieurs
clés.

Clés

Clé de signature d'application : elle permet de signer les
fichiers APK installés sur ['appareil d'un utilisateur.
Conformément au modele de mises a jour sécurisées
Android, la clé de signature reste la méme pendant toute la

durée de vie de votre application.

Clé d'importation : elle sert a signer |'app bundle ou le fichier
APK avant de l'importer pour la signature d'application avec

Google Play.

Signature de I' application

ETAPE 1: Qénérer une clé d'importation et un keystore

Dans la barre de menu, cliquez sur Build > Generate Signed
Bundle/APK.

Dans la boite de dialogue Generate Signed Bundle or APK
(Générer un app bundle/APK signé), sélectionnez Android
App Bundle (ce qui est recommandé), puis cliquez sur Next

(Suivant).

Sous Key Store Path (Chemin du keystore), cliquez sur Create

new.

Dans la fenétre New Key Store (Nouveau keystore), renseignez

les champs concernant votre keystore et votre clé.

Signature de I' application

ETAPE 1: Qénérer une clé d'importation et un keystore

1. Keystore

o Key store path (Chemin d'acces) : sélectionnez l'emplacement ol votre keystore doit étre créé. Ajoutez également un nom de fichier avec l'extension .jks a

la fin du chemin d'acces.
o Password (Mot de passe) : créez et confirmez un mot de passe sécurisé pour votre keystore.
2. Clé
o Alias: : saisissez un nom permettant d'identifier votre clé.
o Password (Mot de passe) : créez et confirmez un mot de passe sécurisé pour votre clé. Utilisez le méme mot de passe que pour votre keystore.

o Validity (years) (Validité en années) : définissez la durée de validité de votre clé, en années. Votre clé doit étre valide pendant au moins 25 ans pour que

vous puissiez signer des mises a jour d'applications avec la méme clé pendant toute la durée de vie de votre application.

o Certificate (Certificat) : saisissez certaines informations vous concernant pour votre certificat. Ces informations n'apparaissent pas dans votre application,
mais sont incluses dans votre certificat avec ['APK.

3. Une fois le formulaire rempli, cliquez sur OK.

Si vous souhaitez créer et signer votre application avec votre clé d'importation, passez a la section Signer votre application avec votre clé d'importation. Si vous
souhaitez uniquement générer la clé et le keystore, cliquez sur Annuler.

Signature de I' application

ETAPE 2 : Signer votre application avec votre clé d'importation

Pour signer votre application avec Android Studio, procédez comme suit : Module

1. Silaboite de dialogue Generate Signed Bundle or APK (Générer un

Key store path ~juser/keystores/upload-keystore.jks

app bundle/APK signé) n'est pas ouverte, cliquez sur Build > Generate o e Bl e

Signed Bundle/APK (Créer > Générer un app bundle/APK signé). N ——

2. Dans la boite de dialogue Generate Signed Bundle or APK (Générer un Key alias

app bundle/APK signé), sélectionnez Android App Bundle ou APK, puis Key password

Remember passwords

cliquez sur Next (Suivant).

Export encrypted key for enrolling published apps in

3. Sélectionnez un module dans la liste déroulante. Cancel Previous

4. Indiquez le chemin d'acces a votre keystore et a |'alias de votre clé,

puis saisissez leurs mots de passe respectifs.

5. Cliquez sur Next (Suivant).

Signature de I' application

ETAPE 2 : Signer votre application avec votre clé d'importation

Pour signer votre application avec Android Studio, procédez

Generate Signed Bundle
App bundle(s) generated successfully:

comme suit ;

la fena . flect dossier de destinati Module app": or the app bundie.
6. Dans la tenetre suivante, sélectionnez un dossier de destination exported key file.

pour votre application signée. Ensuite, sélectionnez le type de

compilation et, si nécessaire, choisissez le ou les types de produit.
Une fois qu'Android Studio a terminé de compiler votre

7. Sivous créez et signez un APK, vous devez sélectionner les application signée, vous pouvez la localiser (localize) ou 'analyser

versions de signature que votre application doit accepter. (analyze) en cliquant sur l'option appropriée dans la notification

8 . Cliquez sur Créer. POp-up

Signature de I' application

ETAPE 3 : Utiliser la signature d'application Play

Configurer votre application

1. Connectez-vous a la Play Console. °

2. Créezvotre nouvelle release en suivant les instructions pour la

préparer et la déployer.

3. Apres avoir choisi un canal de publication, configurez la signature
d'application dans la section App signing (Signature

d'application).

Une version est une combinaison d'une ou de plusieurs révisions

d'application que vous préparez avant de déployer une application J

ou la mise a jour d'une application. Vous pouvez créer une version

dans trois canaux de tests différents ou dans le canal de production :

Canal de tests ouverts : les versions de tests ouverts sont
accessibles aux testeurs sur Google Play. Les utilisateurs peuvent

rejoindre vos tests depuis votre fiche Play Store.

Canal de tests fermés : les versions de tests fermés sont
accessibles a un nombre limité de testeurs que vous sélectionnez
et qui testent une version préliminaire de votre application et

vous font part de leurs commentaires.

Canal de tests internes : les versions de tests internes sont

accessibles aux testeurs de votre choix (100 maximum).

Canal de production : les versions de production sont accessibles

a tous les utilisateurs de Google Play dans les pays de votre choix.

https://play.google.com/console/?hl=fr

Signature de I' application

Que se passe-t-il derriére I'assistant graphigue d’Android Studio

Quand on clique dans Android Studio sur : Build > Generate Signed Bundle / APK, Android Studio ne compile rien lui-méme. Il agit comme une interface graphique qui déclenche trois mécanismes

techniques précis.

1 Création et gestion de la clé de signature (keytool)

e Ilappelle l'outil Java standard keytool
e Ilgénere:

e un keystore (.jks)

e uneclé privée

e un certificat auto-signé
Android Studio masque cet outil, mais le mécanisme est universel et indépendant de 'IDE.
3 Compilation réelle de I'application (Gradle)

Gradle est 'outil qui :compile le code, applique les regles de sécurité, signe 'application et
génére ’AAB ou 'APK.

Quand on clique sur Generate Signed Bundle, Android Studio exécute en arriere-plan :
./gradlew bundleRelease pour un AAB destiné a étre transformé par Google Play
ou

./gradlew assembleRelease pour un APK prét a installer

2 Configuration de la signature (signingConfigs)

Associer un keystore, une clé et un mot de passe a une version de compilaton (release)

Il écrit automatiquement dans build.gradle.kts, une configuration du systéme de build (Gradle):

signingConfigs {

create("release") {

storeFile = file("my-release-

key.jks")

storePassword

Mk kk k1l

keyAlias = "mykey"

keyPassword =

Mk kkxil

buildTypes {
getByName("release") {

signingConfig =

signingConfigs.getByName("release")

}

Signature de I' application

Que se passe-t-il derriére le bouton d’Android Studio

Compilation réelle de I'application (Gradle)
1 Commande principale
./gradlew bundleRelease

e Cette commande génére un Android App Bundle (AAB) destiné a Google Play.

e Elle ne produit pas directement un APK installable, mais un fichier .aab optimisé.

3 Résultat concret

Aprés exécution, tu trouveras :

app/build/outputs/bundle/release/app-release.aab

e Cefichier est optimisé pour Google Play.
e Google Play peut générer a partir de ce bundle :
o APKuniversel

o APKs fractionnés par appareil, ABI, densité, langue

2 Que fait Qradle derriére ?

bundleRelease n’est pas une tache isolée. Elle déclenche un graphe de tasks. Voici les principales :

Task Gradle

compileReleasejavaWithjavac

mergeReleaseResources

processReleaseManifest
packageRelease
signReleaseBundle

bundleRelease

Réle

Compile le code Java/Kotlin pour le build type

Release

Fusionne toutes les ressources (images, layouts,

strings)

Prépare le manifeste Android

Prépare les fichiers pour le bundle

Applique la signature avec le keystore de release

Assemble enfin le .aab final

Chaque task dépend des précédentes : si compileReleaseJavaWithjavac échoue, le bundle ne peut pas

étre généré.

Signer votre application

Facteurs a prendre en compte concernant la signature

Il est recommandé de signer une application avec le méme certificat pendant toute sa durée de vie. Les raisons sont les suivantes :

Mises a jour

Lorsque le systeme installe une mise a jour
d'application, il compare le ou les certificats
de la nouvelle version a ceux de la version
existante. Le systeme n'autorise la mise a
jour que si les certificats correspondent. Si
vous signez la nouvelle version avec un
certificat différent, vous devez attribuer un
nom de package différent a ['application.
Dans ce cas, l'utilisateur installe cette
nouvelle version comme une nouvelle

application.

Modularité

Android autorise les APK signés par le méme
certificat a s'exécuter dans le méme
processus, si les applications le demandent,
afin que le systeme les traite comme une
seule et méme application. Procéder ainsi
vous permet de déployer votre application
sous forme de modules que les utilisateurs

peuvent mettre a jour indépendamment.

Autorisations de partager du
code ou des données

Android fournit des autorisations basées sur
la signature, afin qu'une application puisse
exposer des fonctionnalités a une autre
application signée avec un certificat
spécifié. En signant plusieurs APK avec le
méme certificat et en utilisant les
vérifications d'autorisation basées sur la
signature, vos applications peuvent partager
du code et des données de maniere

sécurisée.

Signature de I' application

Facteurs a prendre en compte concernant la signature

Sécuriser votre clé

La sécurisation de la clé de signature d’application est cruciale
pour protéger votre identité de développeur et la confiance des
utilisateurs. Si la clé est compromise, un tiers peut distribuer des
applications malveillantes au nom de votre application, voler des
données ou attaquer le systeme. La clé privée est indispensable
pour toutes les mises a jour futures, et sa perte empéche la
publication de nouvelles versions. Pour la protéger, il est
recommandé de choisir des mots de passe forts, de ne jamais
partager la clé ou le keystore, et de conserver le keystore en lieu

sar.

Supprimer les informations de signature de
vos fichiers de compilation

Par défaut, Android Studio peut inclure vos informations de

signature (keystore, mots de passe, alias) en texte clair dans les

fichiers build.gradle.

Ceci représente un risque de sécurité, surtout si le code est

partagé ou open source.

Il faut toujours ajouter le keystore dans .gitignore en cas
d'utilisation de GIT.

Signature de I' application

Facteurs a prendre en compte concernant la signature

Comment supprimer les informations de signature de vos fichiers de compilation

Solution : utiliser un fichier séparé

e Créez un fichier keystore.properties a la racine du projet (ou ailleurs selon vos besoins CI/CD).

e Stockez-y vos informations de signature :

storePassword=myStorePassword
keyPassword=myKeyPassword
keyAlias=myKeyAlias
storeFile=myStoreFileLocation

Chargement des propriétés dans build.gradle
e Chargez keystore.properties dans votre build.gradle avant le bloc android {} :
def keystorePropertiesFile = rootProject.file("keystore.properties")

def keystoreProperties = new Properties()
keystoreProperties.load(new FileInputStream(keystorePropertiesFile))

e Référencez ensuite ces propriétés dans le bloc signingConfigs :

android {
signingConfigs {
config {
keyAlias keystoreProperties['keyAlias']
keyPassword keystoreProperties['keyPassword']
storeFile file(keystoreProperties|'storeFile'])
storePassword keystoreProperties['storePassword']

Compilation sécurisée

e Sélectionnez le build variant et compilez via Build > Build Bundle(s)/APK(s).

e Lesfichiers générés (build/outputs/) ne contiennent plus d’informations sensibles et peuvent étre

inclus dans un contréle de code source.

Importer votre application
dans la Play Console

Une fois que vous avez signé la version de votre application, vous devez

l'importer sur Google Play pour l'inspecter, la tester et la publier.

Importer votre application dans la Play Console

Inspecter les APR a l'aide des derniéres versions et bundles

Si vous importez votre application en tant qu'Android App Bundle, la Play Console génere automatiquement des APK divisés et des APK

multiples pour toutes les configurations d'appareil compatibles avec votre application.

Dans la Play Console, vous pouvez utiliser la section "Derniers bundles" de la page "Dernieres versions et bundles" pour afficher tous les

artefacts APK générés par Google Play, inspecter des données telles que les appareils compatibles et les économies de taille des APK, et

O

télécharger les APK générés pour les déployer et les tester localement.

||

Il faut s'enregistrer au service Signature d'application Play. Celui-ci Il faut s'assurer que votre application respecte les exigences de
est obligatoire depuis aolit 2021 pour importer et signer toutes les taille de Google Play. Google Play accepte une taille de
nouvelles applications. téléchargement totale cumulée de 4 Go. Cette taille inclut tous les

modules et packs d'éléments d'installation.

—
Ll []

Importer votre application dans la Play Console
Mettre & jour votre app bundle

Pour mettre a jour votre application une fois importée dans la Play Console, vous devez augmenter le numéro de la version inclus dans le
module de base, puis créer et importer un nouvel app bundle. Google Play génére ensuite les APK mis a jour avec les nouveaux codes de

version et les distribue aux utilisateurs selon les besoins.

Importer votre application dans la Play Console

Préparer et déployer une version

Etape 1: Créez une version

Une version est une combinaison d'une ou de plusieurs révisions d'application que vous préparez avant de déployer une application ou la

mise a jour d'une application. Vous pouvez créer une version dans trois canaux de tests différents ou dans le canal de production :

Canal de tests ouverts :

les versions de tests ouverts
sont accessibles aux testeurs
sur Google Play. Les
utilisateurs peuvent rejoindre
vos tests depuis votre fiche

Play Store.

Canal de tests fermés :

les versions de tests fermés
sont accessibles a un nombre
limité de testeurs que vous
sélectionnez et qui testent
une version préliminaire de
votre application et vous font

part de leurs commentaires.

Canal de tests internes:

les versions de tests internes
sont accessibles aux testeurs
de votre choix (100

maximum).

Canal de production:

les versions de production
sont accessibles a tous les
utilisateurs de Google Play

dans les pays de votre choix.

Importer votre application dans la Play Console
Préparer et déployer une version

Etape 2 : Préparez la version de votre application

Une version est une combinaison d'une ou de plusieurs révisions d'application que vous préparez avant de déployer une application ou la

mise a jour d'une application. Vous pouvez créer une version dans trois canaux de tests différents ou dans le canal de production :

Utiliser le service Signature Ajoutez vos app bundles Attribuez un nom a la version et
d'application Play Saisissez les notes de version

Avec le service Signature d'application Play, Google gere et protege a votre place votre clé de signature d'application, et ['utilise pour
signer des APK de distribution optimisés et générés a partir de vos app bundles. Ce service stocke votre clé de signature d'application sur

l'infrastructure sécurisée de Google et propose des options de mise a niveau pour renforcer la sécurité.

Importer votre application dans la Play Console

Préparer et déployer une version
Etape 3 : Vérifiez et déployez votre version

Préparer les conditions de

publication

Avant le déploiement, il faut
compléter la fiche Play Store,
renseigner le contenu de
l’application (confidentialité,
acces aux données) et définir le
prix. Sans ces éléments, la
version ne peut pas étre

soumise a ’'examen ni publiée.

Vérifier et finaliser la version

adéployer

Dans la Play Console,
sélectionnez le canal de test (ou
production), puis vérifiez la
version brouillon. L'écran
Prévisualiser et confirmer
permet de détecter les erreurs
bloquantes, qui doivent étre
corrigées avant toute

publication

Gérer ’examen et le

déploiement progressif

Selon le type de modification,
vous pouvez soit enregistrer les
changements pour les
soumettre plus tard, soit
publierimmédiatement. Pour
une mise a jour, il est possible
de choisir un pourcentage
d’utilisateurs afin de réaliser un

déploiement progressif.

Lancer le déploiement aupres

des utilisateurs

Une fois toutes les vérifications
effectuées, cliquez sur Lancer le
déploiement. Pour une
premiére publication en
production, application
devient accessible a tous les
utilisateurs Google Play dans
les pays sélectionnés apres

validation.

Importer votre application dans la Play Console

Préparer et déployer une version

Etape & : Vérifiez les informations de la version

Identification et état de la

version

Cette section indique le nom de la
version, le canal de déploiement
(production, test ouvert, test
fermé) et son état actuel
(brouillon, en cours, publié,
suspendu).

Elle permet de savoir rapidement
ou en est chaque version de

l’application.

Informations de déploiement

Ony trouve la date de la derniere
mise a jour ainsi que les pays ou
régions ciblés par le déploiement.
Cela aide a vérifier la disponibilité
géographique de l'application et a
gérer des déploiements

progressifs ou régionaux.

Contenu technique de la version

Cette partie liste les App Bundles
(AAB) et APK associés a la version
: nouveaux fichiers, fichiers
conservés ou désactivés.

Elle permet de controler
exactement quels artefacts
Android sont utilisés par Google

Play.

Suivi et historique de la version

On accede ici a la présentation de
la version (installations, mises a
jour, performances), aux notes de
version, et a ’historique de
déploiement.

Ces données servent a analyser
'impact de la version et a suivre
toutes les actions effectuées

(diffusion, pause, reprise).

Canau¥% de distribution et
stores Android

Il existe plusieurs options pour distribuer les applications Android, allant de la

publication sur le Play Store aux stores alternatifs.

Canau¥% de distribution et stores Android

En dehors du Google Play Store, il existe plusieurs autres stores Android, chacun ayant ses propres procédures de publication et régles.

Samsung Qalaxy Store Huawvei AppQallery Autres stores alternatifs

e Store officiel des appareils Samsung e Store officiel pour les appareils Huawei e Amazon Appstore : pour tablettes Fire et smartphones

e Nécessite un compte développeur Samsung e Nécessite un compte développeur Huawei Amazon

e Upload direct des APK signés via le portail Samsung e Upload d’APK ou App Bundle signé * Xiaomi GetApps, Oppo App Market, Vivo App Store : stores
Developer e Intégration avec Huawei Mobile Services (HMS) si nécessaire elonaenebyEt

* Supporte tests internes et versions publiques e Possibilité de déploiement par étapes et tests beta * Chaquestore demande:

e Parfois des optimisations spécifiques pour les appareils o Compte développeur dédié
Samsung o Signature APK spécifique
o Soumission via leur portail

e Certains ont des regles de contenu et sécurité différentes du
Play Store

Points communs

e Tous exigent que l'application soit signée
e Tous permettent des tests internes avant publication
e Les APK/AAB doivent respecter les guidelines de sécurité et compatibilité

e LaPlay Console n’est pas utilisée, chaque store a son propre portail

Canaux% de distribution et stores Android

Importer votre application dans la Play Console n’est pas la seule option, mais c’est la méthode officielle et recommandée pour la publication sur Google Play.

CI/CD + Play
Developer API

Distribution manuelle
(sideloading)

Play Console
(méthode officielle)

e Importer un AAB ou APK signé e Permet de distribuer des builds e Installation directe de ’APK sur un e Automatisation de 'import et du

Firebase App
Distribution

e Configurer fiche Play Store,
canaux de test ou production
e Obligatoire pour la publication

publique

signés (APK ou AAB) a des testeurs

internes ou externes

Idéal pour tests alpha/béta rapides

avant publication

Ne publie pas sur le Play Store

appareil via USB ou

téléchargement

Utile pour tests internes ou

démonstrations

Non recommandée pour un
déploiement public (sécurité
limitée, absence de mise a jour

automatique)

déploiement depuis un serveur
(GitHub Actions, GitLab CI, Jenkins)

Permet de uploader directement
un AAB signé sur la Play Console via
API

Toujours lié a la Play Console, mais

sans interface manuelle

Pour la publication officielle sur Google Play, la Play Console est obligatoire. Les autres méthodes servent surtout aux tests internes, beta ou distribution hors Play Store.

Conclusion : Déploiement et Sécurisation d'Applications Android
Points clés a retenir

(O O

Préparation Signature

Comprendre les distinctions entre les versions Debug et Release, la configuration Maitriser les Keystores, la gestion des clés et certificats, ainsi que les bonnes pratiques de
adéquate, la gestion des logs et le versioning. sécurité via des commandes bash.

Publication Déploiement

Utiliser efficacement la Play Console, préparer les App Bundles (AAB) et APK, et effectuer Gérer les différentes versions et canaux de déploiement, assurer un suivi précis des

des tests internes rigoureux avant le lancement. performances et planifier les mises a jour.

Processus complet

Le déploiement et la sécurisation d'applications Android sont des étapes fondamentales qui exigent une attention méticuleuse a chaque phase. D'une préparation rigoureuse de la
version a la gestion stratégique de sa publication et de son déploiement via la Play Console, chaque détail compte. La signature sécurisée de l'application est un pilier central,
garantissant l'intégrité et ['authenticité du code. En respectant ces pratiques, les développeurs peuvent non seulement offrir une expérience utilisateur fiable, mais aussi protéger leurs

applications et leurs utilisateurs contre les menaces potentielles.

