Chapitre 8:
Threads sous

Android

Threads sous Android

Une application Android moderne repose sur plusieurs composants coopérant de maniere concurrente afin d’assurer performance, réactivité et continuité des

traitements. Ce chapitre présente les mécanismes de concurrence en Android, en mettant l'accent sur la gestion des processus, des threads et des composants

dédiés aux taches asynchrones.

0l 02 03

Threads et Runnables en Android Qestion du thread principal (UI Services Android et traitements en
Thread) arriere-plan

04

Bonnes pratiQues et erreurs courantes en programmation concurrente Android

et racat
{] i v
tirga. o
u
p)
L - 1] +
|f resaTan " 2 =
(1 et b 8 24
v, i} 3
Py o T tadik | F {51 {M=n] v
ct o™ 51111 il
o rasatrc) | T) i dutac . =
b & tel -I
T e L1 v, f g1
8.8 1. 15809 1o
L m ol =1 i
- H=body= | . T iheg e
rarmt rmz et Y
[catcl catel I‘ ooy i
g wium s ru; 2 P, 21
i~ end
¥ Ladai{ 1 1.1 o
Jlf LS | atrtels
— Sl ¢
thFLgre : o —l e
aola) {x.abort{al}, rH 6] SLicala)
=t ! bt cenL el =, DRTEET B e A LA tirensformsscalatd 7 .
(") Tt wa i e LLELL * H - "
A WL o Py ot L e ;
t Lo (ot arts _L;E:-—m bra Latad 1% : °
g - - 1d —rH z
;*l_] 11~k rasa forms neney X d
e s s P Torm i
hor™, [x,m] } o o+ sl L 5 i rotarall jeghgt rermion =
_E‘ L ta [l L retuteM)| tramaf b
ng|mataf ex ri-paranl®) attr{=cs ctrafiat: iy nglptn - o,
Eﬂ' it T
- - 4 —— e {8,218
L e caladd(.} bt
el webit-tresTore Labdl
reapcalad (168,143, 1.00)
by bl) 7, + 87, T HA Lty el
: P—.‘ i L kLt tinbag-& L
: thd 'ty ekl rans oreg pal
hi. g Bre o i rt BeR A (L 134y 2 140
1 ul ‘. ¥

Threads et Runnables en Android

Android repose sur un modele d’exécution mono-thread pour U'interface utilisateur. Toute opération longue exécutée sur le thread principal (Ul Thread) provoque un gel de
Uinterface et peut entrainer une ANR (Application Not Responding).

Pour garantir la réactivité de 'application, Android met a disposition des mécanismes de programmation concurrente, principalement les Threads et les Runnables.

Le thread principal (UI Thread)

Le Ul Thread est responsable de :

e [affichage de 'interface graphique,
* lagestion des événements utilisateur (clics, saisie),

® ledessin desvues.
Toute opération longue (réseau, accés disque, calcul intensif) doit étre exécutée en dehors du Ul Thread.

Sinon, l'application risque :

e desralentissements,

* uneANR aprées ~5 secondes de blocage.

Threads et Runnables en Android

Les Threads en Android

Un Thread est un flux d’exécution indépendant permettant d’exécuter du code en paralléle avec le

thread principal.
En Android, les threads sont basés sur ceux que vous connaissez de Java.

Exemple simple

Thread thread = new Thread(new Runnable() {
@Override
public void run() {
// Tache longue (réseau, calcul, lecture fichier)
doLongTask();
}

1
thread.start();

Probléme : acces a ’'Ul depuis un thread : Un thread secondaire ne peut pas modifier Pinterface
graphique.

Exemple typique : Imaginez télécharger une image sur un thread secondaire. Une fois le téléchargement terminé, vous utiliseriez un Handler ou runOnUiThread() pour afficher cette image dans un ImageView sur

['écran.

Mise a jour de I’'UI depuis un thread
Solution 1: runOnUiThread()

runOnUiThread(() -> {
textView.setText("Task finished");
3

Solution 2 : Handler et Looper

Handler handler = new Handler(Looper.getMainLooper());

handler.post(() -> {
textView.setText("Updated");
3

Le Ul Thread fonctionne avec:

®* une Message Queue

e unLooper

Chaque action Ul est ajoutée a la file et traitée séquentiellement, si une tache bloque la file, toutes les

autres attendent.

Threads et Runnables en Android

Les Runnables Pourquoi utiliser Runnable ?
Un Runnable est une interface représentant une tache a exécuter, * Seéparation tache / thread
indépendante du thread qui 'exécute. e Réutilisable

e Plusflexible

Runnable task = new Runnable() { S @l eres:
@Override o
public void run() {
// Code a exécuter o Handler
b o ExecutorService

Threads et Runnables en Android

Qestion des threads avec ExecutorService Mise a jour de I'UI avec ExecutorService

Probléme des threads manuels: Toujours via le thread principal :

e (Création excessive
ExecutorService executor = Executors.newSingleThreadExecutor();

Difficulté d ti
e Difficulté de gestion Handler handler = new Handler(Looper.getMainLooper());

e Fuites mémoire possibles

Solution : ExecutorService executor.execute(() -> {
// tache en arriere-plan
handler.post(() -> {

textView.setText("Task finished");
3,

1,

ExecutorService executor = Executors.newSingleThreadExecutor();

executor.execute(() -> {
// tache en arriere-plan

ok

Avantages :

e Pool de threads: évite de créer/détruire des threads a chaque tache
e Meilleure gestion des ressources : moins de surcharge mémoire

e Recommandé pour les taches répétitives: (requétes réseau, accés BD, traitements)

Threads et Runnables en Android

Exécution concurrente avec €xecutor et Thread Pools

Executor Thread Pool Retour vers le UI Thread
Executor abstrait la gestion des threads.
ExecutorService executor = Handler handler = new
Executors.newFixedThreadPool(4); Handler(Looper.getMainLooper());

Executor executor =

Executors.newSingleThreadExecut

executor.execute(() ->
or(); (0 ->{

Avantages : String result = downloadData();
o handler.post(() ->
executor.execute(() -> { e Réutilisation des threads _
N . textView.setText(result));
// tache en arriere-plan :
e Meilleure performance 1:
D '

e Limitation du nombre de threads

Threads et Runnables en Android

Viewu.post(Runnable) Viewu.postDelayed(Runnable, long)
textView.post(() -> { textView.postDelayed(() -> {
textView.setText("Hello"); textView.setText("After 2 seconds");
Jily } 2000);
Ce que ca fait Ce que ¢a fait
e LeRunnable est ajouté a la queue du thread Ul e Exécute le code sur le thread Ul
e Lecode est exécuté quand 'Ul est préte e Apres un délai (en millisecondes)

e Autorisé pour modifier 'interface

Equivalent conceptuel

new Handler(Looper.getMainLooper()).post(() -> {
textView.setText("Hello");

)k

C’est exactement le méme objectif que : runOnUiThread() et Handler.post(), mais avec une syntaxe plus simple

Threads et Runnables en Android

Cycle de vie et UI Thread

Probléme courant
Un thread continue a travailler alors que :

o [’Activity est détruite

o [utilisateur change d’écran
Android ne l'arréte pas automatiquement
Si l'Activity est détruite (onDestroy()), le thread :

o continue a s’exécuter

o peuttenter d’accéder a une Ul inexistante
Cas typique:

e rotation de l’écran
e navigation vers une autre Activity

e fermeture de l’'app

Solution

Vérifier I’état de I’Activity avant mise a jour Ul

Annuler les taches longues dans onDestroy()

if (lisFinishing()) {
runOnUiThread(() -> updateUI());

Services Android

Services Android

Dans une application Android, certaines taches doivent s’exécuter indépendamment de Uinterface utilisateur, méme lorsque 'utilisateur change
d’écran ou que l'application passe en arriere-plan. Les Services Android sont des composants congus pour gérer ce type de traitements longue durée ou

persistants, sans interaction directe avec 'UL.

Un Service est un Pourquoi utiliser un Exemples concrets
composant Android Qui : Service ? 5 Emede M
e s’exécute en arriere-plan Un Service est utilisé lorsque : o téléchargement de fichiers
e nefournit pas d’interface graphique e une tache doit continuer aprés la e synchronisation de données
e peut continuer a fonctionner méme si fermeture de lActivity e suivi de localisation
UActivity est détruite e un traitement doit durer plusieurs e communication avec un serveur

Un Service ne s’exécute pas secondes ou minutes

automatiquement dans un thread séparé. e une action doit étre exécutée
Par défaut, il s’exécute dans le thread périodiquement ou en continu

principal (Ul Thread).

Cycle de vie d'un Service

Méthodes principales Cycle de vie d’un Bound Service

e 1. onCreate()
onCreate() // Initialisation

onStartCommand() // Démarrage
onDestroy() // Nettoyage 3. Interaction Activity / Service

4. onUnbind()

2. onBind()

5. onDestroy()
Schéma logique :

Réle de onBind()
1. onCreate()

2. onStartCommand() public IBinder onBind(Intent intent)
3. Exécution du traitement

4. onDestroy() onBind() est appelée lorsque :

e uncomposant (Activity, Fragment) se lie a un Service

Un Service se déclare dans le fichier AndroidManifest.xml, a Uintérieur de la balise * via EIGEOERIEE

<application>: Sonrdle:

. . : e retourner un objet IBinder
<service android:name=".MyService" />

e permettant la communication entre ’Activity et le Service

onBind() s’exécute sur le Ul Thread, toute opération lourde a Uintérieur : provoque un ANR. Le Service doit créer ses propres threads pour les traitements longs.

Types de Services Android

—————90——0—

Service démarré (Started Service)

Un service est démarré explicitement et continue a
s’exécuter jusqu’a son arrét.

startService(new Intent(this, MyService.class));

Caractéristiques:

e indépendant de l'Activity
e continue méme si l'utilisateur quitte 'application

e doit étre arrété manuellement

stopService(new Intent(this, MyService.class));

Service lié (Bound Service)

Un service est lié a un ou plusieurs composants (Activity,
Fragment).

bindService(intent, serviceConnection,
Context.BIND_AUTO_CREATE);

Caractéristiques :

e actif uniquement tant qu’un composant est lié
e permet une communication directe (méthodes

publiques)

Utilisé lorsque ’'Ul doit interagir avec le service (ex. lecteur
audio).

Service au premier plan
(Foreground Service)

Un service visible par l'utilisateur via une notification

persistante.

startForeground(notificationld, notification);

Caractéristiques:

e priorité élevée

e moins susceptible d’étre arrété par le systéme
e obligatoire pour certaines taches (localisation,

musique)

Obligatoire a partir d’Android 8 (API 26) pour les services

longue durée en arriére-plan.

Comment démarrer un Service Android

Créer un Service

public class MyService extends Service {

@Override

public int onStartCommand(Intent intent, int flags, int startld) {
// Tache en arriere-plan
Log.d("MyService", "Service démarré");
return START_NOT _STICKY;

@Override
public IBinder onBind(Intent intent) {
return null; // Service non lié

Déclarer le Service dans le MNanifest

<service
android:name=".MyService"
android:exported="false" />

Démarrer le Service depuis une Activity

Intent intent = new Intent(this, MyService.class);
startService(intent);

Le systeme appelle automatiquement onStartCommandy().

Comment démarrer un Service Android

Lorsqu’un Service redéfinit la méthode
onStartCommandy(), il doit retourner une valeur entiere

indiguant au systeme comment réagir si le service est tué

de maniere inattendue (par exemple par manque de

mémoire).

Les valeurs possibles sont :

START_STICKY
Le service est recréé apres avoir été tué par le systeme, mais 'Intent
initial n’est pas redélivré (’Intent recu est null). Ce mode est adapté

aux services devant fonctionner en continu (ex. lecteur audio).

START_NOT_STICKY

Le service n’est pas redémarré apres un arrét par le systeme. Ce mode
est utilisé pour des taches ponctuelles déclenchées par un Intent
spécifique.

START_REDELIVER_INTENT

Le service est redémarré et le dernier Intent est redélivré,
garantissant que la tache interrompue pourra reprendre

correctement.

Depuis Android 8, l'utilisation des services en arriere-plan est limitée. Pour les taches garanties ou différées, Foreground Service ou WorkManager sont

recommandés.

Comment démarrer un Foreground Service

€tape 1 - Déclaration dans le manifeste Etape 2 - Création du service
<uses-permission android:name="android.permission.FOREGROUND_SERVICE"/> public class MyForegroundService extends Service {
<service @Override
android:name=".MyForegroundService" public int onStartCommand(Intent intent, int flags, int startld) {
android:exported="false" /> createNotification();
new Thread(() -> {
€tape 3 - Démarrage depuis une Activity CELETIEE
stopSelf();
}).start();

Intent intent = new Intent(this, MyForegroundService.class);

) o return START_NOT_STICKY;}
ContextCompat.startForegroundService(this, intent);

private void createNotification() {
L o o . . . ' Notification notification =
e Service visible avec notification , Priorité élevée, Obligatoire pour taches longues (Android 8+) new NotificationCompat.Builder(this, "channel_id")

.setContentTitle("Foreground Service")

w H n
Damaele O EY Arréter le .setContentText("Task running...")
service premier plan service .setSmalllcon(R.drawable.ic_launcher_foreground)
Appel de Appel de Appel de stopSelf() q .
startForegroundSer startForeground() .bUI|d(),
vice() startForeground(1, notification);}
@Override
N2 A N2 A o))
public IBinder onBind(Intent intent) {
return null;
onStartComm
and Exécution }
Le service recoit tache }
l'intention Traitement en cours

——

Services et Threading

Erreur courante Bonne pratigoue
Exécuter un traitement long directement dans un Service : Utiliser un Thread, Executor ou Coroutine a 'intérieur du
Service.

public int onStartCommand(...) {
doLongTask(); // BLOQUE le Ul Thread new Thread(() -> doLongTask()).start();

Provoque:

e ANR (Application Not Responding)

e gel del’application

JobScheduler

JobScheduler est une APl Android (APl 21+) qui permet de Un Job:

planifier des taches en arriere-plan (jobs) a exécuter selon

, TP
certaines conditions, afin d’économiser la batterie et les pANniestpasiexcclitelimmediatement

ressources. e attend que les conditions soient remplies
JobScheduler permet au systeme : Exemples de conditions:

e deregrouper les taches e connexion réseau disponible

e d’optimiser la consommation e appareil en charge

e dedécider du meilleur moment pour exécuter le travail * Dbatterie suffisante

e stockage non saturé

JobScheduler

a) Créer un JobService b) Planifier le Job
public class SyncJobService extends JobService { ComponentName componentName =
new ComponentName(this, SyncjobService.class);
@Override
public boolean onStartjob(JobParameters params) { Joblinfo jobInfo = new JoblInfo.Builder(1, componentName)
// tache en arriére-plan .setRequiredNetworkType(JobInfo.NETWORK_TYPE_ANY)
return false; // job terminé .setRequiresCharging(true)
} .build();
@Override JobScheduler scheduler =
public boolean onStopJob(JobParameters params) { (JobScheduler) getSystemService(JOB_SCHEDULER_SERVICE);

return true; // relancer si interrompu

} scheduler.schedule(jobinfo);

WorkManager

WorkManager est une APl Android destinée a exécuter des Probléme des Services
taches en arriere-plan de maniere fiable,

mémesi : e Lesysteme peut arreter un Service a tout moment
e Forte consommation de batterie
e |application est fermée

e Restrictions séveres depuis Android 8+
e letéléphone redémarre

e |e systeme tue le processus Solution
Contrairement a un Service, le systeme garantit l’exécution de la WorkManager choisit automatiquement le meilleur mécanisme :
tache.

e JobScheduler
e AlarmManager

e Foreground Service (si nécessaire)

WorkManager

Exemple

a) Créer un Worker

public class SyncWorker extends Worker {

public SyncWorker(@NonNull Context context,
@NonNull WorkerParameters params) {
super(context, params);

@NonNull

@Override

public Result doWork() {
// tache en arriere-plan
return Result.success();

b) Lancer le travail

WorkRequest workRequest =
new OneTimeWorkRequest.Builder(SyncWorker.class).build();

WorkManager.getinstance(this).enqueue(workRequest);

Exemples concrets

Synchroniser des données avec un serveur
Sauvegarde automatique

Uploade d’images en arriere-plan
Nettoyage de cache périodique

Méme si lutilisateur quitte I’application, la tiche sera exécutée.

Bonnes pratioues et
erreurs courantes en
programmation

concurrente Android

Bonnes pratiQues et erreurs courantes en programmation concurrente Android

1. Toujours exécuter les taches lourdes hors du thread Ul
o Thread, ExecutorService, WorkManager pour éviter blocage de 'UL.
2. Mettre a jour ’Ul uniquement depuis le thread principal
o Utiliser runOnUiThread(), Handler.post(), View.post().
3. Utiliser un pool de threads plutot que de créer de nombreux threads
o ExecutorService ou Executors.newFixedThreadPool().
4. Préférer WorkManager pour les taches différées ou fiables
o Garantit 'exécution méme apres redémarrage du téléphone.
5. Libérer les ressources correctement
o Arréter les services (stopService(), stopSelf())
o Shutdown les ExecutorService avec shutdown().
6. Gérer le cycle de vie Android

o Ne pas laisser un thread continuer apres la destruction d’une Activity si non nécessaire.

Bonnes pratiQues et erreurs courantes en programmation concurrente Android

Besoin

Tache courte liée a 'Ul

Tache longue visible

Tache différée, fiable

Tache périodique

Solution

Thread / Executor

Foreground Service

WorkManager

WorkManager

Conclusion

Solution

Thread / Runnable

Executor / ExecutorService

Service

Foreground Service

WorkManager

Description

Fil d’exécution simple

Gestion de pool de threads

Composant Android pour taches

en arriére-plan

Service visible a 'utilisateur

(notification persistante)

API haut-niveau pour taches

différées et fiables

Utilisation typique

Taches courtes, calculs, 1/0

ponctuelle

Taches répétitives ou paralléles

Taches longues, indépendantes
de l’Ul

Musique, GPS, téléchargement

Synchronisation, sauvegarde,

upload, taches périodiques

Avantages

Simple, direct

Gestion automatique des threads,
réutilisation de threads, meilleure

performance

Fonctionne méme si activité
fermée, cycle de vie Android
intégré

Ne peut pas étre tué facilement
par le systéme, tache longue et
critique

Fiable méme si app fermée ou
redémarrage, choisit
automatiquement le mécanisme
interne (JobScheduler/
AlarmManager / Foreground

Service)

Limites

Ne gére pas la durée de vie, pas
adapté pour Ul ou taches longues

Toujours manuel pour la mise a
jourde 'UI

Ne garantit pas 'exécution si le
systéme ferme l'app, pas optimisé
batterie

Doit afficher une notification,

consommateur de batterie

Moins précis en timing exact, pas

pour taches temps réel strictes

