
Chapitre 8 :
Threads sous
Android

Threads sous Android
Une application Android moderne repose sur plusieurs composants coopérant de manière concurrente afin d’assurer performance, réactivité et continuité des

traitements. Ce chapitre présente les mécanismes de concurrence en Android, en mettant l’accent sur la gestion des processus, des threads et des composants

dédiés aux tâches asynchrones.

01

Threads et Runnables en Android

02

Gestion du thread principal (UI
Thread)

03

Services Android et traitements en
arrière-plan

04

Bonnes pratiques et erreurs courantes en programmation concurrente Android

Threads et Runnables en
Android

Threads et Runnables en Android
Android repose sur un modèle d’exécution mono-thread pour l’interface utilisateur. Toute opération longue exécutée sur le thread principal (UI Thread) provoque un gel de

l’interface et peut entraîner une ANR (Application Not Responding).

Pour garantir la réactivité de l’application, Android met à disposition des mécanismes de programmation concurrente, principalement les Threads et les Runnables.

Le thread principal (UI Thread)

Le UI Thread est responsable de :

l’affichage de l’interface graphique,

la gestion des événements utilisateur (clics, saisie),

le dessin des vues.

Toute opération longue (réseau, accès disque, calcul intensif) doit être exécutée en dehors du UI Thread.

Sinon, l’application risque :

des ralentissements,

une ANR après ~5 secondes de blocage.

Threads et Runnables en Android

Thread thread = new Thread(new Runnable() {
 @Override

 public void run() {
 // Tâche longue (réseau, calcul, lecture fichier)
 doLongTask();

 }
});
thread.start();

Les Threads en Android
Un Thread est un flux d’exécution indépendant permettant d’exécuter du code en parallèle avec le

thread principal.

En Android, les threads sont basés sur ceux que vous connaissez de Java.

Exemple simple

Problème : accès à l’UI depuis un thread : Un thread secondaire ne peut pas modifier l’interface

graphique.

runOnUiThread(() -> {

 textView.setText("Task finished");
});

Handler handler = new Handler(Looper.getMainLooper());

handler.post(() -> {

 textView.setText("Updated");
});

Mise à jour de l’UI depuis un thread
Solution 1 : runOnUiThread()

Solution 2 : Handler et Looper

Le UI Thread fonctionne avec :

une Message Queue

un Looper

Chaque action UI est ajoutée à la file et traitée séquentiellement, si une tâche bloque la file, toutes les

autres attendent.

Exemple typique : Imaginez télécharger une image sur un thread secondaire. Une fois le téléchargement terminé, vous utiliseriez un Handler ou runOnUiThread() pour afficher cette image dans un ImageView sur

l'écran.

Threads et Runnables en Android

Runnable task = new Runnable() {
 @Override
 public void run() {
 // Code à exécuter
 }
};

Les Runnables
Un Runnable est une interface représentant une tâche à exécuter,

indépendante du thread qui l’exécute.

Pourquoi utiliser Runnable ?

Séparation tâche / thread

Réutilisable

Plus flexible

Compatible avec :

Thread

Handler

ExecutorService

Threads et Runnables en Android

ExecutorService executor = Executors.newSingleThreadExecutor();

executor.execute(() -> {
 // tâche en arrière-plan
});

Gestion des threads avec ExecutorService

Problème des threads manuels:

Création excessive

Difficulté de gestion

Fuites mémoire possibles

Solution : ExecutorService

ExecutorService executor = Executors.newSingleThreadExecutor();
Handler handler = new Handler(Looper.getMainLooper());

executor.execute(() -> {
 // tâche en arrière-plan
 handler.post(() -> {

 textView.setText("Task finished");
 });
});

Mise à jour de l’UI avec ExecutorService

 Toujours via le thread principal :

Avantages :

Pool de threads: évite de créer/détruire des threads à chaque tâche

Meilleure gestion des ressources : moins de surcharge mémoire

Recommandé pour les tâches répétitives: (requêtes réseau, accès BD, traitements)

Threads et Runnables en Android
Exécution concurrente avec Executor et Thread Pools

Executor executor =
Executors.newSingleThreadExecut
or();

executor.execute(() -> {
 // tâche en arrière-plan
});

Executor
Executor abstrait la gestion des threads.

ExecutorService executor =
Executors.newFixedThreadPool(4);

Thread Pool

Avantages :

Réutilisation des threads

Meilleure performance

Limitation du nombre de threads

Handler handler = new
Handler(Looper.getMainLooper());

executor.execute(() -> {
 String result = downloadData();
 handler.post(() ->
textView.setText(result));
});

Retour vers le UI Thread

Threads et Runnables en Android

textView.post(() -> {

 textView.setText("Hello");
});

new Handler(Looper.getMainLooper()).post(() -> {

 textView.setText("Hello");
});

View.post(Runnable)

Ce que ça fait

Le Runnable est ajouté à la queue du thread UI

Le code est exécuté quand l’UI est prête

 Autorisé pour modifier l’interface

Équivalent conceptuel

textView.postDelayed(() -> {

 textView.setText("After 2 seconds");
}, 2000);

View.postDelayed(Runnable, long)

Ce que ça fait

Exécute le code sur le thread UI

Après un délai (en millisecondes)

C’est exactement le même objectif que : runOnUiThread() et Handler.post(), mais avec une syntaxe plus simple

Threads et Runnables en Android

Cycle de vie et UI Thread
Problème courant

Un thread continue à travailler alors que :

l’Activity est détruite

l’utilisateur change d’écran

Android ne l’arrête pas automatiquement

Si l’Activity est détruite (onDestroy()), le thread :

continue à s’exécuter

peut tenter d’accéder à une UI inexistante

Cas typique :

rotation de l’écran

navigation vers une autre Activity

fermeture de l’app

if (!isFinishing()) {
 runOnUiThread(() -> updateUI());
}

Solution

Vérifier l’état de l’Activity avant mise à jour UI

Annuler les tâches longues dans onDestroy()

Services Android

Services Android
Dans une application Android, certaines tâches doivent s’exécuter indépendamment de l’interface utilisateur, même lorsque l’utilisateur change

d’écran ou que l’application passe en arrière-plan. Les Services Android sont des composants conçus pour gérer ce type de traitements longue durée ou

persistants, sans interaction directe avec l’UI.

Un Service est un
composant Android qui :

s’exécute en arrière-plan

ne fournit pas d’interface graphique

peut continuer à fonctionner même si

l’Activity est détruite

Un Service ne s’exécute pas

automatiquement dans un thread séparé.
Par défaut, il s’exécute dans le thread

principal (UI Thread).

Pourquoi utiliser un
Service ?
Un Service est utilisé lorsque :

une tâche doit continuer après la
fermeture de l’Activity

un traitement doit durer plusieurs

secondes ou minutes

une action doit être exécutée
périodiquement ou en continu

Exemples concrets
lecture de musique

téléchargement de fichiers

synchronisation de données

suivi de localisation

communication avec un serveur

Cycle de vie d’un Service

onCreate() // Initialisation
onStartCommand() // Démarrage
onDestroy() // Nettoyage

<service android:name=".MyService" />

Méthodes principales

Schéma logique :

onCreate()1.

onStartCommand()2.

Exécution du traitement3.

onDestroy()4.

Un Service se déclare dans le fichier AndroidManifest.xml, à l’intérieur de la balise

<application> :

public IBinder onBind(Intent intent)

Cycle de vie d’un Bound Service

onCreate()1.

onBind()2.

Interaction Activity / Service3.

onUnbind()4.

onDestroy()5.

Rôle de onBind()

onBind() est appelée lorsque :

un composant (Activity, Fragment) se lie à un Service

via bindService()

Son rôle :

retourner un objet IBinder

permettant la communication entre l’Activity et le Service

onBind() s’exécute sur le UI Thread, toute opération lourde à l’intérieur : provoque un ANR. Le Service doit créer ses propres threads pour les traitements longs.

Types de Services Android

startService(new Intent(this, MyService.class));

stopService(new Intent(this, MyService.class));

1

Service démarré (Started Service)
Un service est démarré explicitement et continue à
s’exécuter jusqu’à son arrêt.

Caractéristiques :

indépendant de l’Activity

continue même si l’utilisateur quitte l’application

doit être arrêté manuellement

bindService(intent, serviceConnection,
Context.BIND_AUTO_CREATE);

2

Service lié (Bound Service)
Un service est lié à un ou plusieurs composants (Activity,
Fragment).

Caractéristiques :

actif uniquement tant qu’un composant est lié

permet une communication directe (méthodes

publiques)

Utilisé lorsque l’UI doit interagir avec le service (ex. lecteur

audio).

startForeground(notificationId, notification);

3

Service au premier plan
(Foreground Service)
Un service visible par l’utilisateur via une notification

persistante.

Caractéristiques :

priorité élevée

moins susceptible d’être arrêté par le système

obligatoire pour certaines tâches (localisation,

musique)

Obligatoire à partir d’Android 8 (API 26) pour les services

longue durée en arrière-plan.

Comment démarrer un Service Android

public class MyService extends Service {

 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {
 // Tâche en arrière-plan
 Log.d("MyService", "Service démarré");
 return START_NOT_STICKY;
 }

 @Override
 public IBinder onBind(Intent intent) {
 return null; // Service non lié
 }
}

Créer un Service

<service
 android:name=".MyService"
 android:exported="false" />

Intent intent = new Intent(this, MyService.class);
startService(intent);

Déclarer le Service dans le Manifest

Démarrer le Service depuis une Activity

 Le système appelle automatiquement onStartCommand().

Comment démarrer un Service Android

Lorsqu’un Service redéfinit la méthode

onStartCommand(), il doit retourner une valeur entière

indiquant au système comment réagir si le service est tué

de manière inattendue (par exemple par manque de

mémoire).

Les valeurs possibles sont :

START_STICKY

Le service est recréé après avoir été tué par le système, mais l’Intent

initial n’est pas redélivré (l’Intent reçu est null). Ce mode est adapté

aux services devant fonctionner en continu (ex. lecteur audio).

START_NOT_STICKY
Le service n’est pas redémarré après un arrêt par le système. Ce mode

est utilisé pour des tâches ponctuelles déclenchées par un Intent

spécifique.

START_REDELIVER_INTENT

Le service est redémarré et le dernier Intent est redélivré,

garantissant que la tâche interrompue pourra reprendre

correctement.

Depuis Android 8, l’utilisation des services en arrière-plan est limitée. Pour les tâches garanties ou différées, Foreground Service ou WorkManager sont

recommandés.

Comment démarrer un Foreground Service

<uses-permission android:name="android.permission.FOREGROUND_SERVICE"/>

<service
 android:name=".MyForegroundService"

 android:exported="false" />

Intent intent = new Intent(this, MyForegroundService.class);
ContextCompat.startForegroundService(this, intent);

Étape 1 – Déclaration dans le manifeste

Étape 3 – Démarrage depuis une Activity

Service visible avec notification , Priorité élevée, Obligatoire pour tâches longues (Android 8+)

onStartComm
and

Le service reçoit
l'intention

Exécution
tâche

Traitement en cours

Démarrer le
service
Appel de

startForegroundSer
vice()

Arrêter le
service

Appel de stopSelf()

Passer au
premier plan

Appel de
startForeground()

public class MyForegroundService extends Service {

 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {

 createNotification();
 new Thread(() -> {
 doLongTask();

 stopSelf();
 }).start();
 return START_NOT_STICKY;}

 private void createNotification() {
 Notification notification =
 new NotificationCompat.Builder(this, "channel_id")

 .setContentTitle("Foreground Service")
 .setContentText("Task running...")
 .setSmallIcon(R.drawable.ic_launcher_foreground)

 .build();
 startForeground(1, notification);}
 @Override

 public IBinder onBind(Intent intent) {
 return null;
 }

}

Étape 2 – Création du service

Services et Threading

public int onStartCommand(...) {
 doLongTask(); // BLOQUE le UI Thread
}

Erreur courante
Exécuter un traitement long directement dans un Service :

Provoque :

ANR (Application Not Responding)

gel de l’application

new Thread(() -> doLongTask()).start();

Bonne pratique
Utiliser un Thread, Executor ou Coroutine à l’intérieur du

Service.

JobScheduler
JobScheduler est une API Android (API 21+) qui permet de

planifier des tâches en arrière-plan (jobs) à exécuter selon

certaines conditions, afin d’économiser la batterie et les

ressources.

JobScheduler permet au système :

de regrouper les tâches

d’optimiser la consommation

de décider du meilleur moment pour exécuter le travail

Un Job :

n’est pas exécuté immédiatement

attend que les conditions soient remplies

Exemples de conditions :

connexion réseau disponible

appareil en charge

batterie suffisante

stockage non saturé

JobScheduler

public class SyncJobService extends JobService {

 @Override
 public boolean onStartJob(JobParameters params) {
 // tâche en arrière-plan
 return false; // job terminé
 }

 @Override
 public boolean onStopJob(JobParameters params) {
 return true; // relancer si interrompu
 }
}

a) Créer un JobService

ComponentName componentName =
 new ComponentName(this, SyncJobService.class);

JobInfo jobInfo = new JobInfo.Builder(1, componentName)
 .setRequiredNetworkType(JobInfo.NETWORK_TYPE_ANY)
 .setRequiresCharging(true)
 .build();

JobScheduler scheduler =
 (JobScheduler) getSystemService(JOB_SCHEDULER_SERVICE);

scheduler.schedule(jobInfo);

b) Planifier le Job

WorkManager
WorkManager est une API Android destinée à exécuter des

tâches en arrière-plan de manière fiable,

même si :

l’application est fermée

le téléphone redémarre

le système tue le processus

Contrairement à un Service, le système garantit l’exécution de la

tâche.

Problème des Services

Le système peut arrêter un Service à tout moment

Forte consommation de batterie

Restrictions sévères depuis Android 8+

Solution

WorkManager choisit automatiquement le meilleur mécanisme :

JobScheduler

AlarmManager

Foreground Service (si nécessaire)

WorkManager

public class SyncWorker extends Worker {

 public SyncWorker(@NonNull Context context,
 @NonNull WorkerParameters params) {
 super(context, params);

 }

 @NonNull

 @Override
 public Result doWork() {
 // tâche en arrière-plan

 return Result.success();
 }
}

Exemple

a) Créer un Worker WorkRequest workRequest =
 new OneTimeWorkRequest.Builder(SyncWorker.class).build();

WorkManager.getInstance(this).enqueue(workRequest);

b) Lancer le travail

Exemples concrets
 Synchroniser des données avec un serveur

 Sauvegarde automatique

Uploade d’images en arrière-plan

Nettoyage de cache périodique

Même si l’utilisateur quitte l’application, la tâche sera exécutée.

Bonnes pratiques et
erreurs courantes en
programmation
concurrente Android

Bonnes pratiques et erreurs courantes en programmation concurrente Android

Toujours exécuter les tâches lourdes hors du thread UI1.

Thread, ExecutorService, WorkManager pour éviter blocage de l’UI.

Mettre à jour l’UI uniquement depuis le thread principal2.

Utiliser runOnUiThread(), Handler.post(), View.post().

Utiliser un pool de threads plutôt que de créer de nombreux threads3.

ExecutorService ou Executors.newFixedThreadPool().

Préférer WorkManager pour les tâches différées ou fiables4.

Garantit l’exécution même après redémarrage du téléphone.

Libérer les ressources correctement5.

Arrêter les services (stopService(), stopSelf())

Shutdown les ExecutorService avec shutdown().

Gérer le cycle de vie Android6.

Ne pas laisser un thread continuer après la destruction d’une Activity si non nécessaire.

Bonnes pratiques et erreurs courantes en programmation concurrente Android

Besoin Solution

Tâche courte liée à l’UI Thread / Executor

Tâche longue visible Foreground Service

Tâche différée, fiable WorkManager

Tâche périodique WorkManager

Conclusion

Solution Description Utilisation typique Avantages Limites

Thread / Runnable Fil d’exécution simple Tâches courtes, calculs, I/O

ponctuelle

Simple, direct Ne gère pas la durée de vie, pas

adapté pour UI ou tâches longues

Executor / ExecutorService Gestion de pool de threads Tâches répétitives ou parallèles Gestion automatique des threads,
réutilisation de threads, meilleure

performance

Toujours manuel pour la mise à
jour de l’UI

Service Composant Android pour tâches

en arrière-plan

Tâches longues, indépendantes

de l’UI

Fonctionne même si activité

fermée, cycle de vie Android
intégré

Ne garantit pas l’exécution si le

système ferme l’app, pas optimisé
batterie

Foreground Service Service visible à l’utilisateur

(notification persistante)

Musique, GPS, téléchargement Ne peut pas être tué facilement

par le système, tâche longue et
critique

Doit afficher une notification,

consommateur de batterie

WorkManager API haut-niveau pour tâches

différées et fiables

Synchronisation, sauvegarde,

upload, tâches périodiques

Fiable même si app fermée ou

redémarrage, choisit
automatiquement le mécanisme

interne (JobScheduler /

AlarmManager / Foreground

Service)

Moins précis en timing exact, pas

pour tâches temps réel strictes

