Chapitre 7 : API Android

Maitriser l'interaction avec les fonctionnalités natives du téléphone pour créer des

applications puissantes et sécurisées

Plan du Chapitre

01 0 0

Informations de base %‘éléphonie Géolocalisation

Accés aux contacts et numeéros de téléphone Gestion des appels, SMS et MMS avec les APIs Intégration GPS et services de cartographie
via Content Providers systeme

0 0 0

Caméra Multimédia Interactions tactiles

Capture de photos et vidéos avec l'appareil

0]

Sonneries, vibrations et feedback utilisateur

Gestion avancée des gestes et événements

Z{éseau

Wi-Fi, Bluetooth, NFC et connectivité

Objectif du Chapitre

Comprendre les API natives Android i)
Fonctionnalités

Ce chapitre vous permettra de maitriser comment une application Android peut . o o .
Accés aux capacités matérielles du device

interagir avec les fonctionnalités natives du téléphone comme la téléphonie,

les contacts, le GPS, la caméra et le réseau.

Vous apprendrez a exploiter ces APIs tout en respectant le modéle de Sécurité

permissions et de sécurité Android, essentiel pour protéger la vie privée des Gestion des permissions runtime

utilisateurs et garantir la conformité de vos applications.

Chaque API sera étudiée avec ses cas d'usage reels, ses bonnes pratiques et ses

limitations techniques. Pratique

Cas d'usage concrets et patterns

Content Providers et Acces aux Contacts

am

Architecture des données partagées Android

Contacts

Les Content Providers constituent le mécanisme fondamental d'Android pour partager

des données entre applications. Ils agissent comme une interface standardisée permettant R Q a

Clamntiarind Doshoiare Drsbarted

kA

Donnees privees VieturiteU Masekg Govsestoie

Informations stockées exclusivement dans votre application, inaccessibles aux autres ke &
apps g ﬁ

IkareBorese Pesbtbu Bley Tilestna

Données partagées e a 3

Ceolnuirna Doesbrmc Corlabimact

a votre application d'accéder aux informations systeme de maniére sécurisée et contrdlée.

Contacts, médias, calendrier - accessibles via Content Providers avec permissions

appropriées

Le ContactsContract est e Content Provider dédié a la gestion des contacts. Il organise les
données en plusieurs tables liées : contacts bruts, contacts agrégés, numeéros de

téléphone, emails et adresses.

Lecture des Contacts

Permissions nécessaires

<uses-permission
android:name=

"android.permission.READ_CONTACTS" />

<uses-permission
android:name=
"android.permission.WRITE_CONTACTS" />

Utilisation du Cursor

Le Cursor est I'objet qui permet de parcourir les résultats d'une
requéte sur un Content Provider. Il fonctionne comme un pointeur
sur les lignes de données retournées.

Vous devez toujours fermer le Cursor apreés utilisation pour éviter

les fuites mémoire.

Données accessibles

e Nom complet du contact

* Numéro(s) de téléphone avec type (mobile, fixe, travail)
* Adresse(s) email avec catégorie

* Photo de profil

« Informations supplémentaires selon la source

[J) Important: Depuis Android 10+, I'accés au numéro de
téléphone du device lui-méme est fortement limité pour
protéger la vie privée. Concentrez-vous sur les contacts du

répertoire.

Exemple pratique : lire les contacts

Cursor cursor = getContentResolver().query(
ContactsContract.Contacts.CONTENT_URI,
null, null, null, null

J§

while (cursor.moveToNext()) {
String name = cursor.getString(
cursor.getColumnIndex(

ContactsContract.Contacts.DISPLAY_NAME

)
Log.d("CONTACT", name);

cursor.close(); // Important : libérer les ressources
Ce code interroge le ContentResolver pour obtenir un Cursor contenant tous les

contacts. La méthode moveToNext () parcourt chaque ligne, et getString() extrait le

nom d'affichage. N'oubliez jamais de fermer le Cursor pour éviter les fuites mémoire.

Cas d'Usage et Bonnes Pratiques

Application de messagerie CRM mobile Synchronisation

Sélection de contacts pour envoyer des Synchronisation des contacts clients, gestion ~ Sauvegarde et restauration des contacts,
messages, affichage des conversations avec des interactions et historique des synchronisation multi-devices avec cloud
noms et photos communications

Bonnes pratiques essentielles

Demande de permission runtime Gestion du refus utilisateur
Depuis Android 6.0, vous devez demander les permissions Votre application doit continuer a fonctionner méme si
dangereuses au moment de I'exécution, avec une explication I'utilisateur refuse I'accés aux contacts. Prévoyez des

claire de |'utilité alternatives ou dégradez gracieusement les fonctionnalités

Fonctions de

Taé Is téléphonaques
ephoni
Android offre deux approches pour initier des appels : I'appel direct qui compose automatiquement le numéro, et I'appel via I'application

Téléphone qui ouvre le dialer avec le numeéro pré-rempli, laissant |'utilisateur confirmer l'appel.

ACTION_DIAL ACTION_CALL

Ouvre le dialer sans permission - I'utilisateur contrdéle I'appel Lance I'appel directement - nécessite CALL_PHONE permission

Permissions téléphonie

CALL_PHONE SEND_SMS RECEIVE_SMS

Permet d'initier des appels directement Autorise I'envoi de SMS de maniere Permet de recevoir et lire les SMS entrants

sans interaction utilisateur programmatique

Gestion des SMS et MMS

- 3
0'o
Via Intent Via SmsManager
Ouvre |'app de messagerie par défaut avec le texte pré-rempli. Approche Envoi direct depuis votre code. Nécessite SEND_SMS permission et gestion des
recommandée car elle respecte le choix de l'utilisateur erreurs d'envoi
Réception de SMS

Pour recevoir des SMS, vous devez implémenter un BroadcastReceiver qui écoute I'action SMS_RECEIVED. Cependant, depuis Android 4.4, seule I'application de

messagerie par défaut peut modifier les SMS. Les autres apps peuvent uniquement les lire.

[MMS (Multimedia Messaging Service) : Plus complexe que les SMS car ils contiennent images, vidéos ou audio. La gestion des MMS passe géneralement par

I'application de messagerie par défaut du systeme.

Cas d'usage pratiques

« Bouton "Appeler" dans une app e-commerce pour contacter le service client
 Confirmation par SMS pour vérification d'identité ou codes OTP

* Notifications critiques envoyées par SMS en complément des push notifications

Exemples pratiques

Initier un appel Envoyer un SMS
Utilisez ACTION_DIAL pour ouvrir le composeur avec un numeéro La classe SmsManager permet d'envoyer des SMS programmatiquement
pré-rempli, ou ACTION_CALL pour appeler directement (nécessite via la méthode sendTextMessage().

CALL_PHONE).

Exemple : Appel téléphonique Exemple : Envoi de SMS

Intent intent = new Intent(SmsManager sms =
Intent.ACTION DIAL SmsManager.getDefault();

) sms.sendTextMessage(

intent.setData("0612345678",
Uri.parse("tel:0612345678") null,

) "Bonjour depuis Android",

startActivity(intent); null, null

)5

Permissions et bonnes pratiques

- -
N
a CALL_PHONE SEND_SMS
8‘88 1 Nécessaire pour initier un appel Requise pour envoyer des SMS
L] o .
. , directement sans passer par le programmatiquement. Peut
Ccunrcotceng . o R
composeur. Permission engendrer des colts pour
Pernission A 4 . ;] . oo
i S ko Y | dangereuse qui nécessite l'accord I'utilisateur, d'ou l'importance de
pernission 3 , explicite de |'utilisateur. la transparence.
Doctazl toal toste J

Peanisioi
te Cecfintuel omnte

Privilégier les apps
systreimeecommande d'utiliser les Intents pour déléguer aux applications
systeme (Téléphone, Messages). Cela offre une meilleure expérience

utilisateur et respecte ses préférences.

Géolocalisation avec Android

Sources de localisation

Réseau mobile

Précision moyenne (100-500m), consommation

modérée
GPS
Précision élevée (5-10m) mais consommation batterie E&.
importante
Wi-Fi
— Bonne précision en zone urbaine (20-50m), faible
’ consommation

APIs de localisation
LocationManager FusedLocationProvider
API historique d'Android, accés direct aux fournisseurs de localisation. Plus APl moderne recommandée par Google. Fusionne automatiquement les sources

complexe a utiliser mais offre un contrdle fin. pour optimiser précision et batterie.

Permissions et Cartographie

Permissions de localisation

—— —0— —0—

ACCESS_COARSE_LOCATION ACCESS_FINE_LOCATION Background Location
Localisation approximative via réseau et Localisation précise via GPS. Nécessaire Depuis Android 10, permission séparée
Wi-Fi. Suffisante pour beaucoup d'apps pour navigation et tracking précis pour localisation en arriere-plan.

Justification obligatoire

Intégration de cartes

Les APIs de cartographie comme Google Maps permettent d'afficher des cartes interactives dans vos applications. Le composant MapView s'integre

facilement dans vos layouts.

1] & Q

Marqueurs Position actuelle Navigation
Positionnez des points d'intérét avec icones Affichez la position de l'utilisateur avec cercle de Zoom, déplacement, rotation et inclinaison de la

personnalisées et info-bulles précision carte

Exemple : récupérer la position

LocationManager 1m = (LocationManager)

getSystemService(LOCATION SERVICE);

Location location = 1m.getLastKnownLocation(

LocationManager.GPS_PROVIDER
)

if (location != null) {
double latitude = location.getLatitude();

double longitude = location.getlLongitude();

Log.d("POSITION", "Lat: " + latitude +

, Lng: + longitude);

Optimisation batterie
Utilisez getLastKnownLocation() pour obtenir rapidement une position sans

activer le GPS. Pour un suivi continu, privilégiez les mises a jour espacées.

) Permissions dynamiques
Demandez la permission au moment ou |'utilisateur déclenche une action

nécessitant la localisation. Expliquez toujours le contexte d'utilisation.

Caméra et Appareil Photo

Deux approches d'acces caméra

Via Intent

Délégue a I'application Caméra systeme. Simple et recommandé pour captures basiques.

Retourne Bitmap ou URI du fichier créé.

Permissions et stockage

Permissions requises

» CAMERA : acceés a la caméra physique
. WRITE_EXTERNAL_STORAGE : enregistrement des photos (selon version Android)

Depuis Android 10, I'acces au stockage externe utilise Scoped Storage qui limite I'acces aux

fichiers.

Cas d'usage courants

® Scan de documents ® Photo de profil

Via Camera2 API / CameraX
Contréle avancé de la caméra (exposition, focus, format). Nécessaire pour apps photo

professionnelles ou AR.

Stockage des images

Stockage interne : fichiers privés a I'app, supprimés a la désinstallation

Stockage externe : dossiers publics (DCIM, Pictures), accessibles par d'autres apps et galerie

® QR Code / Code-barres

OCR pour extraire texte de factures, cartes d'identité Capture et upload d'avatar utilisateur Scan pour paiements, authentification, inventaire

Exemples pratiques

Capturer une image via Intent

Android permet d'utiliser I'application Caméra systeme via un Intent implicite. Cette approche est recommandée car elle respecte les préférences utilisateur et ne

nécessite pas d'implémenter toute la logique de capture.

Déclenchement de la caméra Récupération de la photo
Intent intent = new Intent(@Override
MediaStore.ACTION_IMAGE_CAPTURE protected void onActivityResult(
); int requestCode,
startActivityForResult(intent, 100); int resultCode,

Intent data

Le code 100 est un identifiant de requéte qui vous permettra de récupérer le) {
résultat. if (requestCode == 100) {
Bitmap photo = (Bitmap)
data.getExtras().get("data");
imageView.setImageBitmap(photo);
}
}

Permission CAMERA : Obligatoire dans le manifeste. Note : I'image retournée est une miniature. Pour une qualité complete, utilisez un fichier de destination avec

EXTRA_OUTPUT.

Cas d'usage dela

cameéra

Photo de profil Scan de documents Réalité augmentée

Permettre aux utilisateurs de personnaliser Numériser des cartes d'identité, factures ou Superposer des éléments virtuels sur le flux
leur compte avec une photo capturée ou codes QR pour automatiser la saisie caméra en temps réel pour le shopping ou

sélectionnée depuis la galerie. d'informations. les jeux.

Vibrations, Sons et Feedback Tactile
API Vibrator

L'API Vibrator permet de déclencher des vibrations pour fournir un retour haptique a l'utilisateur. La permission VIBRATE doit étre déclarée dans le manifest.

1 2 3

Vibration courte Vibration longue Motif personnalisé

Confirmation d'action (50-100ms) Alerte ou notification (300-500ms) Séquence on/off pour feedback unique

Gestion des sons systeme

Android distingue plusieurs types de sons avec des volumes contrdlables indépendamment :

[) Respectde I'UX: Verifiez toujours le mode silencieux
 Sonnerie : appels entrants

avant de jouer un son. N'abusez pas des vibrations qui
* Notification : alertes et messages
peuvent irriter |'utilisateur et consommer de la
 Alarme : réveils et rappels batteri
atterie.
 Média: musique et vidéos

Utilisez MediaPlayer pour des fichiers audio longs (musique, podcasts) et SoundPool pour des

sons courts répétitifs (effets sonores, feedback).

Exemples pratiques

Feedback haptique avec Vibrator

Le service Vibrator permet de créer des retours tactiles pour
améliorer 'expérience utilisateur. La vibration doit étre courte et

pertinente pour ne pas devenir intrusive.

Vibration simple

Vibrator v = (Vibrator)
getSystemService(VIBRATOR _SERVICE);
v.vibrate(500); // 500ms

Permission requise

VIBRATE dans le manifeste AndroidManifest.xml

Sons systeme avec MediaPlayer

Pour jouer un son personnalise, placez votre fichier audio dans

res/raw/ et utilisez MediaPlayer.

MediaPlayer mp = MediaPlayer.create(
this,
R.raw.notification

)

mp.start();

[J) Bonne pratique : Respectez toujours le mode silencieux

ou Ne pas déranger de 'appareil avec AudioManager.

Ces feedbacks sont essentiels dans les notifications, confirmations d'action, ou interfaces de jeu pour renforcer I'engagement utilisateur.

Ecrans Tactiles et Gestes

Evénements tactiles MotionEvent

ACTION_DOWN ACTION_UP
Doigt touche I'écran - début d'interaction Doigt quitte I'écran - fin d'interaction
1 2 3

ACTION_MOVE

Doigt se déplace sur I'écran - drag en cours

Gestes avancés avec GestureDetector
Le GestureDetector simplifie [a détection de gestes complexes en analysant les séquences de MotionEvent. Il identifie automatiquement les patterns courants.

- J:] Scroll %& Swipe / Fling 0 Pinch

Défilement vertical ou horizontal du contenu Balayage rapide dans une direction Pincement pour zoom avec deux doigts

l‘i'_ﬂ Long Press %% Double Tap

Appui prolongé pour menu contextuel Double clic rapide pour zoom ou action

Exemple pratique

Evénements tactiles et gestures

L'écran tactile est l'interface principale d'interaction sur Android. La gestion des événements MotionEvent permet de créer des expériences utilisateur riches et fluides.

O &

ACTION_DOWN ACTION_MOVE ACTION_UP
Le doigt touche I'écran. Point de départ de toute interaction tactile. Le doigt se déplace sur I'écran. Utilisé pour le glissement, le dessin, Le doigt quitte I'écran. Finalise I'action et déclenche I'événement (clic,
ou le drag & drop. swipe, etc.).

Exemple d'implémentation

view.setOnTouchListener((v, event) -> {
switch (event.getAction()) {
case MotionEvent.ACTION_DOWN:
Log.d("TOUCH", "Ecran touché");
break;
case MotionEvent.ACTION_MOVE:
float x = event.getX();
float y = event.getY();
// Logique de déplacement
break;
case MotionEvent.ACTION_UP:
Log.d("TOUCH", "Doigt levé");
break;

}

return true;

})s

APIs Réseau et Connectivité

Etat et types de réseau

Votre application doit vérifier I'état de connexion avant d'effectuer des opérations réseau. Les permissions INTERNET et ACCESS_NETWORK_STATE sont essentielles.

Wi-Fi Bluetooth

Activation, scan des réseaux disponibles, connexion programmatique (limité Bluetooth classique pour audio et transferts, BLE pour objets connectés basse
depuis Android 10) consommation

NFC Wi-Fi Direct

Communication courte distance pour paiements sans contact, badges, et échange Connexion peer-to-peer sans routeur pour partage de fichiers et streaming local

rapide de données

Sécurité des communications

Utilisez HTTPS systématiquement Validez les certificats SSL
Chiffrement des échanges obligatoire depuis Android 9. Protege contre Ne désactivez jamais la vérification des certificats, méme en développement.

I'interception et la modification des données Utilisez des certificats de test valides

APIs Réseau et

Permission INTERNET

Déclaration obligatoire dans le manifeste pour toute communication réseau :

ConnectivityManager

<uses-permission

android:name="android.permission.INTERNET"/>

Requéte HTTP simple Vérification réseau

URL url = new URL(ConnectivityManager cm =

"https://api.example.com/data" (ConnectivityManager)

getSystemService(

)s

HttpURLConnection conn = CONNECTIVITY_SERVICE

);

(HttpURLConnection)
NetworkInfo netInfo =

url.openConnection();
conn.setRequestMethod("GET"); cm.getActiveNetworkInfo();
if (netInfo != null &&
netInfo.isConnected()) {

// Connexion OK

}

Secare HITPS connection 1

Sécurité et bonnes pratiques réseau

Internet # Wi-Fi
Une connexion Internet peut étre Wi-Fi, données mobiles, ou Ethernet. Ne
présumez jamais du type de connexion et adaptez votre usage

(téléchargement lourd sur Wi-Fi uniquement).

Toujours utiliser HTTPS
Depuis Android 9, le trafic HTTP non chiffré est bloqué par défaut. Utilisez
exclusivement HTTPS pour protéger les données de vos utilisateurs contre les

interceptions.

Librairies modernes recommandées
Préférez Retrofit ou OkHttp a HttpURLConnection pour simplifier les appels
API REST, gérer le JSON automatiquement, et bénéficier d'une meilleure

gestion des erreurs.

Cette base réseau prépare directement l'intégration d'APIs REST complexes et la

construction d'applications connectées professionnelles.

Conclusion : Responsabilité et Bonnes Pratiques

Principes fondamentaux

Les APIs Android offrent un acceés puissant aux capacités matérielles du device, mais cette puissance s'accompagne d'une grande responsabilité envers les

utilisateurs.
QO
D
N

Gestion d'erreurs robuste

Respect de la vie privée Anticipez les refus de permissions, absences

Permissions explicites Ne collectez et ne stockez que les données de matériel, erreurs réseau. Dégradez

Demandez uniqguement les permissions : ; :
essentielles. Anonymisez quand possible. gracieusement les fonctionnalités

nécessaires et expliquez clairement pourquoi Conformez-vous au RGPD

VOUS en avez besoin

Vers les applications connectées

La maitrise de ces APIs natives constitue le fondement pour créer des applications modernes qui interagissent avec des services web, consomment des

APIs REST, et s'integrent dans des écosystemes IoT.

Dans les prochains chapitres, vous découvrirez comment connecter vos applications a des backends cloud, gérer I'authentification, et construire des

architectures distribuées performantes et sécurisées.

