
Chapitre 7 : API Android

Maîtriser l'interaction avec les fonctionnalités natives du téléphone pour créer des

applications puissantes et sécurisées

Plan du Chapitre

01

Informations de base

Accès aux contacts et numéros de téléphone

via Content Providers

0

2Téléphonie

Gestion des appels, SMS et MMS avec les APIs

système

0

3Géolocalisation

Intégration GPS et services de cartographie

0

4Caméra

Capture de photos et vidéos avec l'appareil

0

5Multimédia

Sonneries, vibrations et feedback utilisateur

0

6Interactions tactiles

Gestion avancée des gestes et événements

0

7Réseau

Wi-Fi, Bluetooth, NFC et connectivité

Objectif du Chapitre

Comprendre les API natives Android

Ce chapitre vous permettra de maîtriser comment une application Android peut

interagir avec les fonctionnalités natives du téléphone comme la téléphonie,

les contacts, le GPS, la caméra et le réseau.

Vous apprendrez à exploiter ces APIs tout en respectant le modèle de

permissions et de sécurité Android, essentiel pour protéger la vie privée des

utilisateurs et garantir la conformité de vos applications.

Chaque API sera étudiée avec ses cas d'usage réels, ses bonnes pratiques et ses

limitations techniques.

Fonctionnalités

Accès aux capacités matérielles du device

Sécurité

Gestion des permissions runtime

Pratique

Cas d'usage concrets et patterns

Content Providers et Accès aux Contacts

Architecture des données partagées Android

Les Content Providers constituent le mécanisme fondamental d'Android pour partager

des données entre applications. Ils agissent comme une interface standardisée permettant

à votre application d'accéder aux informations système de manière sécurisée et contrôlée.

Données privées

Informations stockées exclusivement dans votre application, inaccessibles aux autres

apps

Données partagées

Contacts, médias, calendrier - accessibles via Content Providers avec permissions

appropriées

Le ContactsContract est le Content Provider dédié à la gestion des contacts. Il organise les

données en plusieurs tables liées : contacts bruts, contacts agrégés, numéros de

téléphone, emails et adresses.

Lecture des Contacts

Permissions nécessaires

<uses-permission

 android:name=

 "android.permission.READ_CONTACTS" />

<uses-permission

 android:name=

 "android.permission.WRITE_CONTACTS" />

Utilisation du Cursor

Le Cursor est l'objet qui permet de parcourir les résultats d'une

requête sur un Content Provider. Il fonctionne comme un pointeur

sur les lignes de données retournées.

Vous devez toujours fermer le Cursor après utilisation pour éviter

les fuites mémoire.

Données accessibles

• Nom complet du contact

• Numéro(s) de téléphone avec type (mobile, fixe, travail)

• Adresse(s) email avec catégorie

• Photo de profil

• Informations supplémentaires selon la source

Important : Depuis Android 10+, l'accès au numéro de

téléphone du device lui-même est fortement limité pour

protéger la vie privée. Concentrez-vous sur les contacts du

répertoire.

Exemple pratique : lire les contacts

Cursor cursor = getContentResolver().query(

 ContactsContract.Contacts.CONTENT_URI,

 null, null, null, null

);

while (cursor.moveToNext()) {

 String name = cursor.getString(

 cursor.getColumnIndex(

 ContactsContract.Contacts.DISPLAY_NAME

)

);

 Log.d("CONTACT", name);

}

cursor.close(); // Important : libérer les ressources
Ce code interroge le ContentResolver pour obtenir un Cursor contenant tous les

contacts. La méthode moveToNext() parcourt chaque ligne, et getString() extrait le

nom d'affichage. N'oubliez jamais de fermer le Cursor pour éviter les fuites mémoire.

Cas d'Usage et Bonnes Pratiques

Application de messagerie

Sélection de contacts pour envoyer des

messages, affichage des conversations avec

noms et photos

CRM mobile

Synchronisation des contacts clients, gestion

des interactions et historique des

communications

Synchronisation

Sauvegarde et restauration des contacts,

synchronisation multi-devices avec cloud

Bonnes pratiques essentielles

Demande de permission runtime

Depuis Android 6.0, vous devez demander les permissions

dangereuses au moment de l'exécution, avec une explication

claire de l'utilité

Gestion du refus utilisateur

Votre application doit continuer à fonctionner même si

l'utilisateur refuse l'accès aux contacts. Prévoyez des

alternatives ou dégradez gracieusement les fonctionnalités

Fonctions de

TéléphonieAppels téléphoniques

Android offre deux approches pour initier des appels : l'appel direct qui compose automatiquement le numéro, et l'appel via l'application

Téléphone qui ouvre le dialer avec le numéro pré-rempli, laissant l'utilisateur confirmer l'appel.

ACTION_DIAL

Ouvre le dialer sans permission - l'utilisateur contrôle l'appel

ACTION_CALL

Lance l'appel directement - nécessite CALL_PHONE permission

Permissions téléphonie

CALL_PHONE

Permet d'initier des appels directement

sans interaction utilisateur

SEND_SMS

Autorise l'envoi de SMS de manière

programmatique

RECEIVE_SMS

Permet de recevoir et lire les SMS entrants

Gestion des SMS et MMS

Via Intent

Ouvre l'app de messagerie par défaut avec le texte pré-rempli. Approche

recommandée car elle respecte le choix de l'utilisateur

Via SmsManager

Envoi direct depuis votre code. Nécessite SEND_SMS permission et gestion des

erreurs d'envoi

Réception de SMS

Pour recevoir des SMS, vous devez implémenter un BroadcastReceiver qui écoute l'action SMS_RECEIVED. Cependant, depuis Android 4.4, seule l'application de

messagerie par défaut peut modifier les SMS. Les autres apps peuvent uniquement les lire.

MMS (Multimedia Messaging Service) : Plus complexe que les SMS car ils contiennent images, vidéos ou audio. La gestion des MMS passe généralement par

l'application de messagerie par défaut du système.

Cas d'usage pratiques

• Bouton "Appeler" dans une app e-commerce pour contacter le service client

• Confirmation par SMS pour vérification d'identité ou codes OTP

• Notifications critiques envoyées par SMS en complément des push notifications

Exemples pratiques

Initier un appel

Utilisez ACTION_DIAL pour ouvrir le composeur avec un numéro

pré-rempli, ou ACTION_CALL pour appeler directement (nécessite

CALL_PHONE).

Envoyer un SMS

La classe SmsManager permet d'envoyer des SMS programmatiquement

via la méthode sendTextMessage().

Exemple : Appel téléphonique

Intent intent = new Intent(

 Intent.ACTION_DIAL

);

intent.setData(

 Uri.parse("tel:0612345678")

);

startActivity(intent);

Exemple : Envoi de SMS

SmsManager sms =

 SmsManager.getDefault();

sms.sendTextMessage(

 "0612345678",

 null,

 "Bonjour depuis Android",

 null, null

);

Permissions et bonnes pratiques

CALL_PHONE

Nécessaire pour initier un appel

directement sans passer par le

composeur. Permission

dangereuse qui nécessite l'accord

explicite de l'utilisateur.

SEND_SMS

Requise pour envoyer des SMS

programmatiquement. Peut

engendrer des coûts pour

l'utilisateur, d'où l'importance de

la transparence.

Privilégier les apps

systèmeAndroid recommande d'utiliser les Intents pour déléguer aux applications

système (Téléphone, Messages). Cela offre une meilleure expérience

utilisateur et respecte ses préférences.

Géolocalisation avec Android
Sources de localisation

GPS

Précision élevée (5-10m) mais consommation batterie

importante

Réseau mobile

Précision moyenne (100-500m), consommation

modérée

Wi-Fi

Bonne précision en zone urbaine (20-50m), faible

consommation

APIs de localisation

LocationManager

API historique d'Android, accès direct aux fournisseurs de localisation. Plus

complexe à utiliser mais offre un contrôle fin.

FusedLocationProvider

API moderne recommandée par Google. Fusionne automatiquement les sources

pour optimiser précision et batterie.

Permissions et Cartographie
Permissions de localisation

1

ACCESS_COARSE_LOCATION

Localisation approximative via réseau et

Wi-Fi. Suffisante pour beaucoup d'apps

2

ACCESS_FINE_LOCATION

Localisation précise via GPS. Nécessaire

pour navigation et tracking précis

3

Background Location

Depuis Android 10, permission séparée

pour localisation en arrière-plan.

Justification obligatoire

Intégration de cartes

Les APIs de cartographie comme Google Maps permettent d'afficher des cartes interactives dans vos applications. Le composant MapView s'intègre

facilement dans vos layouts.

Marqueurs

Positionnez des points d'intérêt avec icônes

personnalisées et info-bulles

Position actuelle

Affichez la position de l'utilisateur avec cercle de

précision

Navigation

Zoom, déplacement, rotation et inclinaison de la

carte

Exemple : récupérer la position

LocationManager lm = (LocationManager)

 getSystemService(LOCATION_SERVICE);

Location location = lm.getLastKnownLocation(

 LocationManager.GPS_PROVIDER

);

if (location != null) {

 double latitude = location.getLatitude();

 double longitude = location.getLongitude();

 Log.d("POSITION", "Lat: " + latitude +

 ", Lng: " + longitude);

}

⚡ Optimisation batterie

Utilisez getLastKnownLocation() pour obtenir rapidement une position sans

activer le GPS. Pour un suivi continu, privilégiez les mises à jour espacées.

🔒 Permissions dynamiques

Demandez la permission au moment où l'utilisateur déclenche une action

nécessitant la localisation. Expliquez toujours le contexte d'utilisation.

Caméra et Appareil Photo
Deux approches d'accès caméra

Via Intent

Délègue à l'application Caméra système. Simple et recommandé pour captures basiques.

Retourne Bitmap ou URI du fichier créé.

Via Camera2 API / CameraX

Contrôle avancé de la caméra (exposition, focus, format). Nécessaire pour apps photo

professionnelles ou AR.

Permissions et stockage

Permissions requises

• CAMERA : accès à la caméra physique

• WRITE_EXTERNAL_STORAGE : enregistrement des photos (selon version Android)

Depuis Android 10, l'accès au stockage externe utilise Scoped Storage qui limite l'accès aux

fichiers.

Stockage des images

Stockage interne : fichiers privés à l'app, supprimés à la désinstallation

Stockage externe : dossiers publics (DCIM, Pictures), accessibles par d'autres apps et galerie

Cas d'usage courants

Scan de documents

OCR pour extraire texte de factures, cartes d'identité

Photo de profil

Capture et upload d'avatar utilisateur

QR Code / Code-barres

Scan pour paiements, authentification, inventaire

Exemples pratiques
Capturer une image via Intent

Android permet d'utiliser l'application Caméra système via un Intent implicite. Cette approche est recommandée car elle respecte les préférences utilisateur et ne

nécessite pas d'implémenter toute la logique de capture.

Déclenchement de la caméra

Intent intent = new Intent(

 MediaStore.ACTION_IMAGE_CAPTURE

);

startActivityForResult(intent, 100);

Le code 100 est un identifiant de requête qui vous permettra de récupérer le

résultat.

Récupération de la photo

@Override

protected void onActivityResult(

 int requestCode,

 int resultCode,

 Intent data

) {

 if (requestCode == 100) {

 Bitmap photo = (Bitmap)

 data.getExtras().get("data");

 imageView.setImageBitmap(photo);

 }

}

Permission CAMERA : Obligatoire dans le manifeste. Note : l'image retournée est une miniature. Pour une qualité complète, utilisez un fichier de destination avec

EXTRA_OUTPUT.

Cas d'usage de la

caméra
Photo de profil

Permettre aux utilisateurs de personnaliser

leur compte avec une photo capturée ou

sélectionnée depuis la galerie.

Scan de documents

Numériser des cartes d'identité, factures ou

codes QR pour automatiser la saisie

d'informations.

Réalité augmentée

Superposer des éléments virtuels sur le flux

caméra en temps réel pour le shopping ou

les jeux.

Vibrations, Sons et Feedback Tactile
API Vibrator

L'API Vibrator permet de déclencher des vibrations pour fournir un retour haptique à l'utilisateur. La permission VIBRATE doit être déclarée dans le manifest.

1

Vibration courte

Confirmation d'action (50-100ms)

2

Vibration longue

Alerte ou notification (300-500ms)

3

Motif personnalisé

Séquence on/off pour feedback unique

Gestion des sons système

Android distingue plusieurs types de sons avec des volumes contrôlables indépendamment :

• Sonnerie : appels entrants

• Notification : alertes et messages

• Alarme : réveils et rappels

• Média : musique et vidéos

Utilisez MediaPlayer pour des fichiers audio longs (musique, podcasts) et SoundPool pour des

sons courts répétitifs (effets sonores, feedback).

Respect de l'UX : Vérifiez toujours le mode silencieux

avant de jouer un son. N'abusez pas des vibrations qui

peuvent irriter l'utilisateur et consommer de la

batterie.

Exemples pratiques

Feedback haptique avec Vibrator

Le service Vibrator permet de créer des retours tactiles pour

améliorer l'expérience utilisateur. La vibration doit être courte et

pertinente pour ne pas devenir intrusive.

Vibration simple

Vibrator v = (Vibrator)

 getSystemService(VIBRATOR_SERVICE);

v.vibrate(500); // 500ms

Permission requise

VIBRATE dans le manifeste AndroidManifest.xml

Sons système avec MediaPlayer

Pour jouer un son personnalisé, placez votre fichier audio dans

res/raw/ et utilisez MediaPlayer.

MediaPlayer mp = MediaPlayer.create(

 this,

 R.raw.notification

);

mp.start();

Bonne pratique : Respectez toujours le mode silencieux

ou Ne pas déranger de l'appareil avec AudioManager.

Ces feedbacks sont essentiels dans les notifications, confirmations d'action, ou interfaces de jeu pour renforcer l'engagement utilisateur.

Écrans Tactiles et Gestes
Événements tactiles MotionEvent

1

ACTION_DOWN

Doigt touche l'écran - début d'interaction

2

ACTION_MOVE

Doigt se déplace sur l'écran - drag en cours

3

ACTION_UP

Doigt quitte l'écran - fin d'interaction

Gestes avancés avec GestureDetector

Le GestureDetector simplifie la détection de gestes complexes en analysant les séquences de MotionEvent. Il identifie automatiquement les patterns courants.

Scroll

Défilement vertical ou horizontal du contenu

Swipe / Fling

Balayage rapide dans une direction

Pinch

Pincement pour zoom avec deux doigts

Long Press

Appui prolongé pour menu contextuel

Double Tap

Double clic rapide pour zoom ou action

Exemple pratique
Événements tactiles et gestures

L'écran tactile est l'interface principale d'interaction sur Android. La gestion des événements MotionEvent permet de créer des expériences utilisateur riches et fluides.

ACTION_DOWN

Le doigt touche l'écran. Point de départ de toute interaction tactile.

ACTION_MOVE

Le doigt se déplace sur l'écran. Utilisé pour le glissement, le dessin,

ou le drag & drop.

ACTION_UP

Le doigt quitte l'écran. Finalise l'action et déclenche l'événement (clic,

swipe, etc.).

Exemple d'implémentation

view.setOnTouchListener((v, event) -> {

 switch (event.getAction()) {

 case MotionEvent.ACTION_DOWN:

 Log.d("TOUCH", "Écran touché");

 break;

 case MotionEvent.ACTION_MOVE:

 float x = event.getX();

 float y = event.getY();

 // Logique de déplacement

 break;

 case MotionEvent.ACTION_UP:

 Log.d("TOUCH", "Doigt levé");

 break;

 }

 return true;

});

APIs Réseau et Connectivité
État et types de réseau

Votre application doit vérifier l'état de connexion avant d'effectuer des opérations réseau. Les permissions INTERNET et ACCESS_NETWORK_STATE sont essentielles.

Wi-Fi

Activation, scan des réseaux disponibles, connexion programmatique (limité

depuis Android 10)

Bluetooth

Bluetooth classique pour audio et transferts, BLE pour objets connectés basse

consommation

NFC

Communication courte distance pour paiements sans contact, badges, et échange

rapide de données

Wi-Fi Direct

Connexion peer-to-peer sans routeur pour partage de fichiers et streaming local

Sécurité des communications

Utilisez HTTPS systématiquement

Chiffrement des échanges obligatoire depuis Android 9. Protège contre

l'interception et la modification des données

Validez les certificats SSL

Ne désactivez jamais la vérification des certificats, même en développement.

Utilisez des certificats de test valides

APIs Réseau et

Connectivité
Permission INTERNET

Déclaration obligatoire dans le manifeste pour toute communication réseau :

<uses-permission

 android:name="android.permission.INTERNET"/>

Vérifier la connexion

Avant toute requête, vérifiez l'état du réseau avec ConnectivityManager pour éviter

les erreurs et améliorer l'UX.

Requête HTTP simple

URL url = new URL(

 "https://api.example.com/data"

);

HttpURLConnection conn =

 (HttpURLConnection)

 url.openConnection();

conn.setRequestMethod("GET");

Vérification réseau

ConnectivityManager cm =

 (ConnectivityManager)

 getSystemService(

 CONNECTIVITY_SERVICE

);

NetworkInfo netInfo =

 cm.getActiveNetworkInfo();

if (netInfo != null &&

 netInfo.isConnected()) {

 // Connexion OK

}

Sécurité et bonnes pratiques réseau

Internet ≠ Wi-Fi

Une connexion Internet peut être Wi-Fi, données mobiles, ou Ethernet. Ne

présumez jamais du type de connexion et adaptez votre usage

(téléchargement lourd sur Wi-Fi uniquement).

Toujours utiliser HTTPS

Depuis Android 9, le trafic HTTP non chiffré est bloqué par défaut. Utilisez

exclusivement HTTPS pour protéger les données de vos utilisateurs contre les

interceptions.

Librairies modernes recommandées

Préférez Retrofit ou OkHttp à HttpURLConnection pour simplifier les appels

API REST, gérer le JSON automatiquement, et bénéficier d'une meilleure

gestion des erreurs.

Cette base réseau prépare directement l'intégration d'APIs REST complexes et la

construction d'applications connectées professionnelles.

Conclusion : Responsabilité et Bonnes Pratiques
Principes fondamentaux

Les APIs Android offrent un accès puissant aux capacités matérielles du device, mais cette puissance s'accompagne d'une grande responsabilité envers les

utilisateurs.

Permissions explicites

Demandez uniquement les permissions

nécessaires et expliquez clairement pourquoi

vous en avez besoin

Respect de la vie privée

Ne collectez et ne stockez que les données

essentielles. Anonymisez quand possible.

Conformez-vous au RGPD

Gestion d'erreurs robuste

Anticipez les refus de permissions, absences

de matériel, erreurs réseau. Dégradez

gracieusement les fonctionnalités

Vers les applications connectées

La maîtrise de ces APIs natives constitue le fondement pour créer des applications modernes qui interagissent avec des services web, consomment des

APIs REST, et s'intègrent dans des écosystèmes IoT.

Dans les prochains chapitres, vous découvrirez comment connecter vos applications à des backends cloud, gérer l'authentification, et construire des

architectures distribuées performantes et sécurisées.

