Chapitre 4 :
Persistance des
donneées

Stockage local des données sous Android

Chapitre 4.
Persistance
des données

Stockage local des données
sous Android

Persistance des Données

Ce chapitre explore les différentes méthodes de stockage et de persistance des données au sein des applications Android, essentielles pour gérer

l'information de maniere durable et efficace.

Nous aborderons les points suivants :

0 0

Accés aux Fichiers %ustéme de Fichiers & Préférences

Comment lire, écrire et stocker des données dans le systeme de fichiers Manipulation du systeme de fichiers interne et externe, et gestion des
de ['appareil, gérant ainsi les informations de maniere locale. préférences utilisateur pour une expérience personnalisée.

0 0

Bases de Données SQLlite Node Offline

Introduction et utilisation des bases de données SQLite, une solution Stratégies et meilleures pratiques pour développer des applications
robuste pour le stockage structuré de grandes quantités de données. mobiles fonctionnant sans connexion internet, garantissant l'acces aux

données a tout moment.

Persistance des Données

Comprendre comment une application Android peut conserver ses données au-dela d’une seule exécution,
garantissant la disponibilité et l'intégrité des informations méme apres la fermeture de |'application ou le
redémarrage de |'appareil. Ce chapitre explorera les différentes options de stockage locale offertes par Android,

de la simple sauvegarde de préférences aux bases de données complexes.

4.1 Accés aux fichiers : Lecture, Ecriture, Stockage

Android offre la possibilité de stocker des données directement dans des fichiers locaux sur ['appareil. Pour cela, deux types d'espaces de stockage

distincts sont disponibles, chacun avec ses particularités.

]

Stockage Interne

Cet espace est propre a l'application, ce qui signifie que les données
y sont isolées et non accessibles par d'autres applications. Il est
fortement recommandé pour le stockage des informations
confidentielles ou des données essentielles au fonctionnement

exclusif de votre application.

Stockage Externe

Ce stockage est partagé avec d'autres applications et est donc
adapté aux fichiers volumineux ou aux contenus que l'utilisateur
souhaite partager (photos, documents). L'acces a cet espace

nécessite la gestion appropriée des permissions utilisateur.

Les opérations fondamentales que nous explorerons incluent la lecture (récupération de données), |'écriture (enregistrement d'informations) et le

stockage (conservation durable des données méme apres la fermeture de l'application).

4.1 Bonnes pratigues pour la gestion des fichiers

La manipulation des fichiers nécessite une attention particuliere pour garantir la stabilité et la sécurité de votre application. Adoptez ces bonnes pratiques :

1 Vérification d'existence

Toujours vérifier la présence d'un fichier avant toute tentative de lecture pour éviter les exceptions et les erreurs inattendues.

2 Fermeture des flux

Il est crucial de fermer systématiquement tous les flux (InputStream, OutputStream) apres usage afin de libérer les ressources systeme.

3 Protection des données sensibles

Pour les informations confidentielles, utilisez le stockage interne et évitez absolument le stockage externe, potentiellement accessible par d'autres applications.

4 Qestion des erreurs

Mettez en place des blocs try-catch robustes pour gérer les cas d'erreurs (fichier manquant, espace insuffisant, permissions refusées).

5 NMaintenance des fichiers

Prévoyez des mécanismes pour la suppression ou la mise a jour réguliere des fichiers obsoletes afin d'optimiser les performances et ['espace de stockage.

4.2 MNanipulation du systéme de fichiers et préférences
utilisateurs

La gestion des données passe par deux approches fondamentales : le systeme de fichiers pour les documents et les informations structurées, et les

préférences utilisateurs pour les parameétres et les petites données clés-valeur.

Systéme de fichiers Android

Android fournit un environnement sécurisé pour le stockage des fichiers, essentiel pour la persistance des données. Comprendre son fonctionnement

est crucial.
Structure Hiérarchioue Sandboxing Acces API
Le systeme est organisé comme un arbre Chaque application dispose de son Des APl Android dédiées permettent aux
(racine, dossiers, fichiers), facilitant une propre espace de stockage interne isolé, applications d'accéder et de manipuler
gestion logique et intuitive des données. garantissant la confidentialité et des dossiers spécifiques pour des

l'intégrité de ses données. opérations de lecture et d'écriture

sécurisées.

Préférences

ofQo
LJEIJFE@I&M E&thode standard et la plus simple pour stocker des paires clé-valeur discretes,

souvent utilisées pour les configurations de l'application ou les états légers.

X

Utilisation Simple
|déal pour des parametres
comme le theme de
I'application, |'état de
connexion de ['utilisateur ou
de petites données de
préférence qui n'évoluent

pas fréquemment.

x|

Données Legeres

Ce mécanisme n'est pas
congu pour stocker de
grandes quantités de
données ou des structures
complexes. Il est optimisé
pour des informations
clés-valeur rapides d'acces et

de petite taille.

Persistance Facile
Les données stockées via
SharedPreferences sont
sauvegardées méme apres la
fermeture de 'application ou
le redémarrage de |'appareil,
garantissant ainsi la
persistance des réglages

utilisateur.

SharedPreferences

Les SharedPreferences sont un mécanisme simple pour stocker des données légeres sous forme de paires

clé-valeur, utilisées principalement pour les préférences utilisateur et les reglages d'application.

A. Obtenir I'Instance

SharedPreferences prefs = getSharedPreferences("MonAppPrefs",

Context.MODE PRIVATE);

Cette ligne récupere une instance de SharedPreferences pour stocker des données clé-valeur. "MonAppPrefs"

est le nom du fichier XML ou les préférences sont stockées, et MODE_PRIVATE assure que seul votre application

peut y accéder.

B. Lire des Données

Utilisez les méthodes get de SharedPreferences pour lire les données stockées. Chaque méthode nécessite

une clé et une valeur par défaut, utilisée si la clé n'existe pas ou n'est pas trouvée, garantissant ainsi la stabilité

de ['application.

String nom = prefs.getString("nomUtilisateur", "Invité");

int age = prefs.getInt("age", 9);

boolean notifs = prefs.getBoolean("notificationsActives", false);

C. Supprimer des Données

editor.remove("nomUtilisateur");

editor.apply();

Utiliser remove () pour supprimer une clé spécifique.

D. Ecrire des Données

Pour ajouter ou modifier des paires clé-valeur, obtenez un SharedPreferences.Editor, effectuez vos

modifications, puis appliquez-les.

SharedPreferences.Editor editor = prefs.edit();
editor.putString("nomUtilisateur", "John Doe");
editor.putInt("age", 30);

editor.putBoolean("notificationsActives", true);

editor.apply();

apply() vs commit()

apply() commit()

« Asynchrone « Synchrone

« Plusrapide « Bloque le thread

« Pasdevaleur de retour « Retourne un booléen

Recommandation : Utiliser apply() dans la plupart des cas.

4.3 Bonnes pratioues des préférences utilisateurs

Pour une gestion optimale et sans accroc des SharedPreferences, suivez ces recommandations essentielles :

Données Simples Formats Structurés
Ne stockez pas de données complexes (objets, listes) dans les Bien qu'Android utilise XML en interne, privilégiez des valeurs de type

préférences. Elles sont concues pour des paires clé-valeur simples et primitif. Pour des structures plus complexes, orientez-vous vers

légeres. d'autres solutions de persistance.

Clés Explicites Qestion du Stockage

Utilisez des noms de clés clairs et descriptifs. Cela facilite la lecture, Supprimez les préférences devenues inutiles (ex: apres une

la maintenance et |'évite les conflits entre développeurs. désinstallation, une déconnexion) pour éviter l'encombrement et

garantir la pertinence des données.

4.4 Accés aux bases de données SOLite

SQLite est une solution de base de données relationnelle légere et efficace, idéale pour la persistance des données directement sur 'appareil

Android. Elle permet de gérer des informations structurées de maniere autonome, sans nécessiter de serveur externe.

Base de données Embarguée Stockage Structuré

SQLite est entierement intégrée a l'application. Elle ne Elle permet d'organiser et de stocker des données dans des
nécessite aucune installation ou configuration serveur, tables, avec des colonnes et des lignes, facilitant la gestion de
fonctionnant comme un fichier local sur l'appareil. relations complexes entre les informations.

Autonome et Locale Compatible SOL

Son principal avantage est 'absence de serveur, ce qui réduit SQLite supporte la majorité des commandes SQL standards, ce
la complexité de déploiement et permet un fonctionnement qui rend son apprentissage et son utilisation intuitifs pour

hors ligne complet de 'application. ceux qui connaissent déja ce langage.

Opérations Clés avec SOLite

La puissance de SQLite réside dans sa capacité a gérer localement les données structurées. Voici les opérations fondamentales que vous effectuerez pour

interagir avec votre base de données embarquée :

x| x|
Initialisation de la Base Définition des
Création d'une base de données SQLite locale sur l'appareil, servant de mﬁbdﬁﬁlace des structures de données (tables) avec leurs colonnes et
conteneur pour toutes les informations de votre application. types, pour organiser vos informations de maniere logique et efficace.

Manipulation des Données Qestion du Cycle de
Exécution des requétes SQL pour insérer, lire, mettre a jour et supprimer Migsation de la classe SQLiteOpenHelper pour faciliter la création et

des enregistrements dans vos tables. les mises a jour (migrations) de votre schéma de base de données.

Syntaxe des Opérations Clés SOL dans SOLite

Interagir avec une base de données SQLite dans Android Studio ne se limite pas a des requétes SQL brutes. Pour une gestion robuste et pratique, notamment la création et la mise a jour
du schéma, il est essentiel d'utiliser la classe SQLiteOpenHelper. Cette approche encapsule les détails complexes et fournit une API simplifiée pour manipuler votre base de données

locale.

Création et Qestion de la Base de Données avec SQLiteOpenHelper

SQLiteOpenHelper est une classe utilitaire fournie par Android pour faciliter la création, 'ouverture et la gestion des versions de votre base de données. Elle simplifie grandement la

tache de gérer le cycle de vie de la base de données.

1. Etendre SQLiteOpenHelper

Créez une classe personnalisée qui hérite de SQLiteOpenHelper. C'est dans cette classe que vous définirez la structure de votre base de données et les opérations de base.

public class DatabaseHelper extends SQLiteOpenHelper {
public static final String DATABASE_NAME = "MaBaseDeDonnees.db";

public static final int DATABASE_VERSION = 1; // Incrémentez pour les mises a jour

public DatabaseHelper(Context context) {
super(context, DATABASE_NAME, null, DATABASE_VERSION);@

2. Implémenter onCreate(SQLiteDatabase
db)

Cette méthode est appelée une seule fois, lors de la premiere création de la base de données. C'est ici que vous exécutez vos

commandes CREATE TABLE.

@Override
public void onCreate(SQLiteDatabase db) {
String CREATE_TABLE = "CREATE TABLE produits (" +
"id INTEGER PRIMARY KEY AUTOINCREMENT," +
"nom TEXT," +
"prix REAL," +
"quantite INTEGER)";

db.execSQL(CREATE_TABLE);

3. Implémenter onUpgrade(SQLiteDatabase db, int oldVersion,
int newVersion)

Appelée lorsque la version de la base de données (définie dans DATABASE_VERSION) change. Utilisez-la pour gérer

les migrations (ajouter des colonnes, modifier des tables, etc.) en préservant les données existantes, si possible.

@Override
public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
// Pour l'exemple, nous supprimons et recréons. En production, gérez les
migrations.
db.execSQL("DROP TABLE IF EXISTS produits");
onCreate(db);

4.0pérations CRUD Pratioues

Ajoutez des méthodes a votre DatabaseHelper pour encapsuler les opérations d'insertion, de lecture, de mise a jour et de suppression

(CRUD).

1. Insertion de Données
(insertData)
public boolean insertData(String nom, double prix, int quantite) {
SQLiteDatabase db = this.getWritableDatabase();
ContentValues contentValues = new ContentValues();
contentValues.put("nom", nom);
contentValues.put("prix", prix);
contentValues.put("quantite”, quantite);
long result = db.insert("produits", null, contentValues);

return result != -1; // Retourne true si 1'insertion a réussi

2. Lecture de Données (getData)

public Cursor getData() {
SQLiteDatabase db = this.getWritableDatabase();
Cursor res = db.rawQuery("SELECT * FROM produits", null);

return res;

3. Nise & Jour de Données (updateData)

public boolean updateData(String id, String nom, double prix, int quantite) {
SQLiteDatabase db = this.getWritableDatabase();
ContentValues contentValues = new ContentValues();
contentValues.put("id", id);
contentValues.put("nom", nom);
contentValues.put("prix", prix);
contentValues.put("quantite", quantite);
db.update("produits", contentValues, "id = ?", new String[] { id });

return true;

4. Suppression de Données
(deleteData)

public Integer deleteData(String id) {
SQLiteDatabase db = this.getWritableDatabase();
return db.delete("produits”, "id = ?", new String[] { id });

Utilisation dans une Activity
Android

Pour interagir avec votre base de données, instanciez DatabaseHelper dans votre Activity ou Fragment et appelez ses méthodes.

public class MainActivity extends AppCompatActivity {

DatabaseHelper myDb;

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity main);

myDb = new DatabaseHelper(this);

// Exemple d'insertion

boolean isInserted = myDb.insertData("Livre", 19.99, 50);

if (isInserted) Toast.makeText(this, "Données insérées", Toast.LENGTH_LONG).show();
else Toast.makeText(this, "Echec de 1'insertion", Toast.LENGTH_LONG).show();

// Exemple de lecture
Cursor res = myDb.getData();
if (res.getCount() == 0) {
// Afficher message "Rien trouveé"

return;

StringBuffer buffer = new StringBuffer();

while (res.moveToNext()) {
buffer.append("ID :"+ res.getString(@)+"\n");
buffer.append("Nom :"+ res.getString(1)+"\n");
buffer.append("Prix :"+ res.getString(2)+"\n");
buffer.append("Quantité :"+ res.getString(3)+"\n\n");

}

// Afficher toutes les données (par ex. dans un AlertDialog)

// showMessage("Données", buffer.toString());

4.5 Utilisation d'applications mobiles en mode Offline

Le développement d'applications mobiles robustes implique souvent de prévoir des scénarios ou la connectivité Internet est limitée

ou inexistante. Le mode offline est une fonctionnalité essentielle pour garantir une expérience utilisateur ininterrompue et fiable.

N

Acces Continu

Permet aux utilisateurs d'interagir
avec |'application et ses données,
méme en |'absence de connexion

Internet.

Fiabilité en MNobilité
Essentiel pour garantir une
expérience utilisateur fluide dans les
zones a faible connectivité, les

transports ou sans réseau.

D]

Stockage Localisé

Repose sur des mécanismes de
persistance des données directement
sur l'appareil : fichiers, préférences

partagées ou bases de données

SQLite.

Principes du UWlode Offline

Le mode offline repose sur des mécanismes bien définis pour assurer une continuité de service et une intégrité des données, méme en

l'absence de réseau.

x| x| x|
Stockage Local Synchronisation Qestion des Conflits
Les données sont stockées et mises a Intelligente Des mécanismes sont intégrés pour
jour directement sur l'appareil, Dés que la connectivité est rétablie, gérer les éventuels conflits entre les
garantissant un accés et des lapplication initie la synchronisation données locales et distantes,
modifications immédiats, méme sans pour transferer les modifications assurant ainsi la cohérence et
connexion. locales et récuperer les mises a jour l'intégrité de l'information. La

du serveur distant. synchronisation peut étre différée si

nécessaire.

Avantages du mode Offline

L'intégration d'un mode hors ligne offre de nombreux bénéfices, tant pour 'application que pour l'expérience utilisateur finale.

N N
X X|

Accessibilité continue MNeilleure réactivité

Les utilisateurs peuvent accéder aux fonctionnalités et aux données de 'application a Les opérations locales sur les données stockées directement sur 'appareil sont

tout moment, sans étre contraints par la disponibilité d'une connexion internet. généralement plus rapides que les requétes réseau, améliorant ainsi la fluidité de
['application.

N N
x x|

Réduction de la dépendance au réseau Expérience utilisateur améliorée

L'application reste fonctionnelle méme dans des zones a faible couverture réseau ou La combinaison d'une accessibilité constante et d'une réactivité accrue se traduit par

.....

sans aucune connectivité, évitant les frustrations liées aux interruptions de service. une satisfaction globale plus élevée pour 'utilisateur.

Vers des approches plus modernes : La bibliothéoue
Room

Bien que SQLite soit la pierre angulaire de la persistance locale sur Android, la complexité de sa manipulation directe peut
étre source d'erreurs et de code répétitif. Pour simplifier et moderniser le développement de bases de données, Google a

introduit des bibliotheques d'abstraction.

Parmi elles, la bibliotheque Room, qui fait partie d'Android Jetpack, offre une couche d'abstraction puissante au-dessus de
SQLite. Elle permet de travailler avec des objets Java (ou Kotlin) plutot qu'avec des requétes SQL brutes, réduisant ainsi le

code répétitif et offrant une vérification au moment de la compilation pour les requétes SQL.

() Room simplifie l'interaction avec la base de données, améliore la lisibilité du code et renforce la robustesse des
applications grace a sa gestion des migrations et sa sécurité au moment de la compilation, évitant de nombreux

bugs liés a SQLite.

