
Chapitre 4 :
Persistance des
données
Stockage local des données sous Android

Persistance des Données
Ce chapitre explore les différentes méthodes de stockage et de persistance des données au sein des applications Android, essentielles pour gérer

l'information de manière durable et efficace.

Nous aborderons les points suivants :

0

1Accès aux Fichiers
Comment lire, écrire et stocker des données dans le système de fichiers

de l'appareil, gérant ainsi les informations de manière locale.

0

2Système de Fichiers & Préférences
Manipulation du système de fichiers interne et externe, et gestion des

préférences utilisateur pour une expérience personnalisée.

0

3Bases de Données SQLite
Introduction et utilisation des bases de données SQLite, une solution

robuste pour le stockage structuré de grandes quantités de données.

0

4Mode Offline
Stratégies et meilleures pratiques pour développer des applications

mobiles fonctionnant sans connexion internet, garantissant l'accès aux

données à tout moment.

Persistance des Données
Comprendre comment une application Android peut conserver ses données au-delà d’une seule exécution,

garantissant la disponibilité et l'intégrité des informations même après la fermeture de l'application ou le

redémarrage de l'appareil. Ce chapitre explorera les différentes options de stockage locale offertes par Android,

de la simple sauvegarde de préférences aux bases de données complexes.

4.1 Accès aux fichiers : Lecture, Écriture, Stockage
Android offre la possibilité de stocker des données directement dans des fichiers locaux sur l'appareil. Pour cela, deux types d'espaces de stockage

distincts sont disponibles, chacun avec ses particularités.

Stockage Interne
Cet espace est propre à l'application, ce qui signifie que les données

y sont isolées et non accessibles par d'autres applications. Il est

fortement recommandé pour le stockage des informations

confidentielles ou des données essentielles au fonctionnement

exclusif de votre application.

Stockage Externe
Ce stockage est partagé avec d'autres applications et est donc

adapté aux fichiers volumineux ou aux contenus que l'utilisateur

souhaite partager (photos, documents). L'accès à cet espace

nécessite la gestion appropriée des permissions utilisateur.

Les opérations fondamentales que nous explorerons incluent la lecture (récupération de données), l'écriture (enregistrement d'informations) et le

stockage (conservation durable des données même après la fermeture de l'application).

4.1 Bonnes pratiques pour la gestion des fichiers

La manipulation des fichiers nécessite une attention particulière pour garantir la stabilité et la sécurité de votre application. Adoptez ces bonnes pratiques :

1 Vérification d'existence
Toujours vérifier la présence d'un fichier avant toute tentative de lecture pour éviter les exceptions et les erreurs inattendues.

2 Fermeture des flux
Il est crucial de fermer systématiquement tous les flux (InputStream, OutputStream) après usage afin de libérer les ressources système.

3 Protection des données sensibles
Pour les informations confidentielles, utilisez le stockage interne et évitez absolument le stockage externe, potentiellement accessible par d'autres applications.

4 Gestion des erreurs
Mettez en place des blocs try-catch robustes pour gérer les cas d'erreurs (fichier manquant, espace insuffisant, permissions refusées).

5 Maintenance des fichiers
Prévoyez des mécanismes pour la suppression ou la mise à jour régulière des fichiers obsolètes afin d'optimiser les performances et l'espace de stockage.

4.2 Manipulation du système de fichiers et préférences
utilisateurs
La gestion des données passe par deux approches fondamentales : le système de fichiers pour les documents et les informations structurées, et les

préférences utilisateurs pour les paramètres et les petites données clés-valeur.

Système de fichiers Android

Android fournit un environnement sécurisé pour le stockage des fichiers, essentiel pour la persistance des données. Comprendre son fonctionnement

est crucial.

Structure Hiérarchique
Le système est organisé comme un arbre

(racine, dossiers, fichiers), facilitant une

gestion logique et intuitive des données.

Sandboxing
Chaque application dispose de son

propre espace de stockage interne isolé,

garantissant la confidentialité et

l'intégrité de ses données.

Accès API
Des API Android dédiées permettent aux

applications d'accéder et de manipuler

des dossiers spécifiques pour des

opérations de lecture et d'écriture

sécurisées.

Préférences
UtilisateursLes SharedPreferences sont la méthode standard et la plus simple pour stocker des paires clé-valeur discrètes,

souvent utilisées pour les configurations de l'application ou les états légers.

Utilisation Simple
Idéal pour des paramètres

comme le thème de

l'application, l'état de

connexion de l'utilisateur ou

de petites données de

préférence qui n'évoluent

pas fréquemment.

Données Légères
Ce mécanisme n'est pas

conçu pour stocker de

grandes quantités de

données ou des structures

complexes. Il est optimisé

pour des informations

clés-valeur rapides d'accès et

de petite taille.

Persistance Facile
Les données stockées via

SharedPreferences sont

sauvegardées même après la

fermeture de l'application ou

le redémarrage de l'appareil,

garantissant ainsi la

persistance des réglages

utilisateur.

SharedPreferences
Les SharedPreferences sont un mécanisme simple pour stocker des données légères sous forme de paires

clé-valeur, utilisées principalement pour les préférences utilisateur et les réglages d'application.

A. Obtenir l'Instance

SharedPreferences prefs = getSharedPreferences("MonAppPrefs",

Context.MODE_PRIVATE);

Cette ligne récupère une instance de SharedPreferences pour stocker des données clé-valeur. "MonAppPrefs"

est le nom du fichier XML où les préférences sont stockées, et MODE_PRIVATE assure que seul votre application

peut y accéder.

B. Lire des Données
Utilisez les méthodes get de SharedPreferences pour lire les données stockées. Chaque méthode nécessite

une clé et une valeur par défaut, utilisée si la clé n'existe pas ou n'est pas trouvée, garantissant ainsi la stabilité

de l'application.

String nom = prefs.getString("nomUtilisateur", "Invité");

int age = prefs.getInt("age", 0);

boolean notifs = prefs.getBoolean("notificationsActives", false);

C. Supprimer des Données

editor.remove("nomUtilisateur");

editor.apply();

Utiliser remove() pour supprimer une clé spécifique.

D. Écrire des Données
Pour ajouter ou modifier des paires clé-valeur, obtenez un SharedPreferences.Editor, effectuez vos

modifications, puis appliquez-les.

SharedPreferences.Editor editor = prefs.edit();

editor.putString("nomUtilisateur", "John Doe");

editor.putInt("age", 30);

editor.putBoolean("notificationsActives", true);

editor.apply();

apply() vs commit()

apply()
• Asynchrone

• Plus rapide

• Pas de valeur de retour

commit()
• Synchrone

• Bloque le thread

• Retourne un booléen

Recommandation : Utiliser apply() dans la plupart des cas.

4.3 Bonnes pratiques des préférences utilisateurs

Pour une gestion optimale et sans accroc des SharedPreferences, suivez ces recommandations essentielles :

Données Simples
Ne stockez pas de données complexes (objets, listes) dans les

préférences. Elles sont conçues pour des paires clé-valeur simples et

légères.

Formats Structurés
Bien qu'Android utilise XML en interne, privilégiez des valeurs de type

primitif. Pour des structures plus complexes, orientez-vous vers

d'autres solutions de persistance.

Clés Explicites
Utilisez des noms de clés clairs et descriptifs. Cela facilite la lecture,

la maintenance et l'évite les conflits entre développeurs.

Gestion du Stockage
Supprimez les préférences devenues inutiles (ex: après une

désinstallation, une déconnexion) pour éviter l'encombrement et

garantir la pertinence des données.

4.4 Accès aux bases de données SQLite
SQLite est une solution de base de données relationnelle légère et efficace, idéale pour la persistance des données directement sur l'appareil

Android. Elle permet de gérer des informations structurées de manière autonome, sans nécessiter de serveur externe.

Base de données Embarquée
SQLite est entièrement intégrée à l'application. Elle ne

nécessite aucune installation ou configuration serveur,

fonctionnant comme un fichier local sur l'appareil.

Stockage Structuré
Elle permet d'organiser et de stocker des données dans des

tables, avec des colonnes et des lignes, facilitant la gestion de

relations complexes entre les informations.

Autonome et Locale
Son principal avantage est l'absence de serveur, ce qui réduit

la complexité de déploiement et permet un fonctionnement

hors ligne complet de l'application.

Compatible SQL
SQLite supporte la majorité des commandes SQL standards, ce

qui rend son apprentissage et son utilisation intuitifs pour

ceux qui connaissent déjà ce langage.

Opérations Clés avec SQLite

La puissance de SQLite réside dans sa capacité à gérer localement les données structurées. Voici les opérations fondamentales que vous effectuerez pour

interagir avec votre base de données embarquée :

Initialisation de la Base
Création d'une base de données SQLite locale sur l'appareil, servant de

conteneur pour toutes les informations de votre application.

Définition des
TablesMise en place des structures de données (tables) avec leurs colonnes et

types, pour organiser vos informations de manière logique et efficace.

Manipulation des Données
Exécution des requêtes SQL pour insérer, lire, mettre à jour et supprimer

des enregistrements dans vos tables.

Gestion du Cycle de
VieUtilisation de la classe SQLiteOpenHelper pour faciliter la création et

les mises à jour (migrations) de votre schéma de base de données.

Syntaxe des Opérations Clés SQL dans SQLite
Interagir avec une base de données SQLite dans Android Studio ne se limite pas à des requêtes SQL brutes. Pour une gestion robuste et pratique, notamment la création et la mise à jour

du schéma, il est essentiel d'utiliser la classe SQLiteOpenHelper. Cette approche encapsule les détails complexes et fournit une API simplifiée pour manipuler votre base de données

locale.

Création et Gestion de la Base de Données avec SQLiteOpenHelper
SQLiteOpenHelper est une classe utilitaire fournie par Android pour faciliter la création, l'ouverture et la gestion des versions de votre base de données. Elle simplifie grandement la

tâche de gérer le cycle de vie de la base de données.

1. Étendre SQLiteOpenHelper

Créez une classe personnalisée qui hérite de SQLiteOpenHelper. C'est dans cette classe que vous définirez la structure de votre base de données et les opérations de base.

public class DatabaseHelper extends SQLiteOpenHelper {

 public static final String DATABASE_NAME = "MaBaseDeDonnees.db";

 public static final int DATABASE_VERSION = 1; // Incrémentez pour les mises à jour

 public DatabaseHelper(Context context) {

 super(context, DATABASE_NAME, null, DATABASE_VERSION);@

2. Implémenter onCreate(SQLiteDatabase
db)
Cette méthode est appelée une seule fois, lors de la première création de la base de données. C'est ici que vous exécutez vos

commandes CREATE TABLE.

 @Override

 public void onCreate(SQLiteDatabase db) {

 String CREATE_TABLE = "CREATE TABLE produits (" +

 "id INTEGER PRIMARY KEY AUTOINCREMENT," +

 "nom TEXT," +

 "prix REAL," +

 "quantite INTEGER)";

 db.execSQL(CREATE_TABLE);

 }

3. Implémenter onUpgrade(SQLiteDatabase db, int oldVersion,
int newVersion)

Appelée lorsque la version de la base de données (définie dans DATABASE_VERSION) change. Utilisez-la pour gérer

les migrations (ajouter des colonnes, modifier des tables, etc.) en préservant les données existantes, si possible.

 @Override

 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {

 // Pour l'exemple, nous supprimons et recréons. En production, gérez les

migrations.

 db.execSQL("DROP TABLE IF EXISTS produits");

 onCreate(db);

 }

4.Opérations CRUD Pratiques

Ajoutez des méthodes à votre DatabaseHelper pour encapsuler les opérations d'insertion, de lecture, de mise à jour et de suppression

(CRUD).

1. Insertion de Données
(insertData)
 public boolean insertData(String nom, double prix, int quantite) {

 SQLiteDatabase db = this.getWritableDatabase();

 ContentValues contentValues = new ContentValues();

 contentValues.put("nom", nom);

 contentValues.put("prix", prix);

 contentValues.put("quantite", quantite);

 long result = db.insert("produits", null, contentValues);

 return result != -1; // Retourne true si l'insertion a réussi

 }

2. Lecture de Données (getData)

 public Cursor getData() {

 SQLiteDatabase db = this.getWritableDatabase();

 Cursor res = db.rawQuery("SELECT * FROM produits", null);

 return res;

 }

3. Mise à Jour de Données (updateData)

 public boolean updateData(String id, String nom, double prix, int quantite) {

 SQLiteDatabase db = this.getWritableDatabase();

 ContentValues contentValues = new ContentValues();

 contentValues.put("id", id);

 contentValues.put("nom", nom);

 contentValues.put("prix", prix);

 contentValues.put("quantite", quantite);

 db.update("produits", contentValues, "id = ?", new String[] { id });

 return true;

 }

4. Suppression de Données
(deleteData)
 public Integer deleteData(String id) {

 SQLiteDatabase db = this.getWritableDatabase();

 return db.delete("produits", "id = ?", new String[] { id });

 }

Utilisation dans une Activity
Android
Pour interagir avec votre base de données, instanciez DatabaseHelper dans votre Activity ou Fragment et appelez ses méthodes.

public class MainActivity extends AppCompatActivity {

 DatabaseHelper myDb;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 myDb = new DatabaseHelper(this);

 // Exemple d'insertion

 boolean isInserted = myDb.insertData("Livre", 19.99, 50);

 if (isInserted) Toast.makeText(this, "Données insérées", Toast.LENGTH_LONG).show();

 else Toast.makeText(this, "Échec de l'insertion", Toast.LENGTH_LONG).show();

 // Exemple de lecture

 Cursor res = myDb.getData();

 if (res.getCount() == 0) {

 // Afficher message "Rien trouvé"

 return;

 }

 StringBuffer buffer = new StringBuffer();

 while (res.moveToNext()) {

 buffer.append("ID :"+ res.getString(0)+"\n");

 buffer.append("Nom :"+ res.getString(1)+"\n");

 buffer.append("Prix :"+ res.getString(2)+"\n");

 buffer.append("Quantité :"+ res.getString(3)+"\n\n");

 }

 // Afficher toutes les données (par ex. dans un AlertDialog)

 // showMessage("Données", buffer.toString());

4.5 Utilisation d’applications mobiles en mode Offline

Le développement d'applications mobiles robustes implique souvent de prévoir des scénarios où la connectivité Internet est limitée

ou inexistante. Le mode offline est une fonctionnalité essentielle pour garantir une expérience utilisateur ininterrompue et fiable.

Accès Continu
Permet aux utilisateurs d'interagir

avec l'application et ses données,

même en l'absence de connexion

Internet.

Fiabilité en Mobilité
Essentiel pour garantir une

expérience utilisateur fluide dans les

zones à faible connectivité, les

transports ou sans réseau.

Stockage Localisé
Repose sur des mécanismes de

persistance des données directement

sur l'appareil : fichiers, préférences

partagées ou bases de données

SQLite.

Principes du Mode Offline
Le mode offline repose sur des mécanismes bien définis pour assurer une continuité de service et une intégrité des données, même en

l'absence de réseau.

Stockage Local
Les données sont stockées et mises à

jour directement sur l'appareil,

garantissant un accès et des

modifications immédiats, même sans

connexion.

Synchronisation
Intelligente
Dès que la connectivité est rétablie,

l'application initie la synchronisation

pour transférer les modifications

locales et récupérer les mises à jour

du serveur distant.

Gestion des Conflits
Des mécanismes sont intégrés pour

gérer les éventuels conflits entre les

données locales et distantes,

assurant ainsi la cohérence et

l'intégrité de l'information. La

synchronisation peut être différée si

nécessaire.

Avantages du mode Offline
L'intégration d'un mode hors ligne offre de nombreux bénéfices, tant pour l'application que pour l'expérience utilisateur finale.

Accessibilité continue
Les utilisateurs peuvent accéder aux fonctionnalités et aux données de l'application à

tout moment, sans être contraints par la disponibilité d'une connexion internet.

Meilleure réactivité
Les opérations locales sur les données stockées directement sur l'appareil sont

généralement plus rapides que les requêtes réseau, améliorant ainsi la fluidité de

l'application.

Réduction de la dépendance au réseau
L'application reste fonctionnelle même dans des zones à faible couverture réseau ou

sans aucune connectivité, évitant les frustrations liées aux interruptions de service.

Expérience utilisateur améliorée
La combinaison d'une accessibilité constante et d'une réactivité accrue se traduit par

une satisfaction globale plus élevée pour l'utilisateur.

Vers des approches plus modernes : La bibliothèque
Room
Bien que SQLite soit la pierre angulaire de la persistance locale sur Android, la complexité de sa manipulation directe peut

être source d'erreurs et de code répétitif. Pour simplifier et moderniser le développement de bases de données, Google a

introduit des bibliothèques d'abstraction.

Parmi elles, la bibliothèque Room, qui fait partie d'Android Jetpack, offre une couche d'abstraction puissante au-dessus de

SQLite. Elle permet de travailler avec des objets Java (ou Kotlin) plutôt qu'avec des requêtes SQL brutes, réduisant ainsi le

code répétitif et offrant une vérification au moment de la compilation pour les requêtes SQL.

Room simplifie l'interaction avec la base de données, améliore la lisibilité du code et renforce la robustesse des

applications grâce à sa gestion des migrations et sa sécurité au moment de la compilation, évitant de nombreux

bugs liés à SQLite.

